Question Number 221391 by SdC355 last updated on 02/Jun/25 | ||
![]() | ||
$$\int_{\mathrm{0}} ^{\:\infty} {J}_{\nu} ^{\left(\mathrm{1}\right)} \left({t}\right){Y}_{\nu} \left({t}\right)\mathrm{sin}\left({t}\right)\mathrm{d}{t}−\int_{\mathrm{0}} ^{\:\infty} {J}_{\nu} \left({t}\right){Y}_{\nu} ^{\left(\mathrm{1}\right)} \left({t}\right)\mathrm{sin}\left({t}\right)\mathrm{d}{t}=?? \\ $$$${J}_{\nu} \left({t}\right)\:\mathrm{is}\:\nu\:\mathrm{th}\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{first}\:\mathrm{Kind} \\ $$$${Y}_{\nu} \left({t}\right)\:\mathrm{is}\:\nu\:\mathrm{th}\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{second}\:\mathrm{Kind} \\ $$$$\mathrm{sin}\left({t}\right)\:\mathrm{is}\:\mathrm{sine}\:\mathrm{function} \\ $$ | ||