Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 218907 by malwan last updated on 17/Apr/25

 _0 ∫^( 45) arctan(((1+tan x)/( (√2))))dx = ?

$$\:_{\mathrm{0}} \int^{\:\mathrm{45}} {arctan}\left(\frac{\mathrm{1}+{tan}\:{x}}{\:\sqrt{\mathrm{2}}}\right){dx}\:=\:? \\ $$

Commented by mr W last updated on 17/Apr/25

you should make clear what you  mean with ∫_0 ^(45) ∗. maybe you mean  ∫_0 ^(π/4) ∗, then you should also write  ∫_0 ^(π/4) ∗. otherwise the integral is not  defined.

$${you}\:{should}\:{make}\:{clear}\:{what}\:{you} \\ $$$${mean}\:{with}\:\int_{\mathrm{0}} ^{\mathrm{45}} \ast.\:{maybe}\:{you}\:{mean} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \ast,\:{then}\:{you}\:{should}\:{also}\:{write} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \ast.\:{otherwise}\:{the}\:{integral}\:{is}\:{not} \\ $$$${defined}. \\ $$

Commented by malwan last updated on 17/Apr/25

Yes sir , I mean (π/4)  ⋛

$${Yes}\:{sir}\:,\:{I}\:{mean}\:\frac{\pi}{\mathrm{4}}\:\:\cancel{\lesseqgtr} \\ $$

Answered by Nicholas666 last updated on 17/Apr/25

       ((45π)/8)

$$\:\:\:\:\:\:\:\frac{\mathrm{45}\pi}{\mathrm{8}}\: \\ $$

Commented by malwan last updated on 17/Apr/25

Can you do steps sir ? ⋛

$${Can}\:{you}\:{do}\:{steps}\:{sir}\:?\:\cancel{\lesseqgtr} \\ $$

Commented by Nicholas666 last updated on 17/Apr/25

you have to change     ∫^(π/4) _0 arctan(((1+tanx)/( (√2))))dx     and you will get (π^2 /(16))

$${you}\:{have}\:{to}\:{change}\: \\ $$$$\:\:\underset{\mathrm{0}} {\int}^{\pi/\mathrm{4}} {arctan}\left(\frac{\mathrm{1}+{tanx}}{\:\sqrt{\mathrm{2}}}\right){dx} \\ $$$$\:\:\:{and}\:{you}\:{will}\:{get}\:\frac{\pi^{\mathrm{2}} }{\mathrm{16}}\: \\ $$$$ \\ $$

Commented by Nicholas666 last updated on 17/Apr/25

(using radians)we want to evaluate definite integral         ∫_0 ^(π/4) arctan(((1+tanx)/( (√2))))dx  using the interval invertin subtitution  where we raplace x with (π/4)−x, wi find the sum of  angles identity for tanget that   tan ((π/4)−x)=((tan(π/4)−tan x)/(1+tan(π/4)tan x))=((1−tanx)/(1+tanx)),  I=∫_(π/4) ^0 arctan(((1+((1−tan x)/(1+tan x)))/( (√2))).(−dx)   =∫_0 ^(π/4) arctan(((√2)/(1+tan x)))dx   =∫_(0 ) ^(π/4) arcot (((1+tan x)/( (√2))))dx  ,since x>0       I=(1/2)∫_0 ^(π/4) (arctan(((1+tan x)/( (√2))))+arcot(((1+tan x)/( (√2)))))dx      =(1/2)∫_0 ^(π/4) (π/2)dx     = (π^2 /(16))

$$\left({using}\:{radians}\right){we}\:{want}\:{to}\:{evaluate}\:{definite}\:{integral} \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\pi/\mathrm{4}} {arctan}\left(\frac{\mathrm{1}+{tanx}}{\:\sqrt{\mathrm{2}}}\right){dx} \\ $$$${using}\:{the}\:{interval}\:{invertin}\:{subtitution} \\ $$$${where}\:{we}\:{raplace}\:{x}\:{with}\:\frac{\pi}{\mathrm{4}}−{x},\:{wi}\:{find}\:{the}\:{sum}\:{of} \\ $$$${angles}\:{identity}\:{for}\:{tanget}\:{that}\: \\ $$$${tan}\:\left(\frac{\pi}{\mathrm{4}}−{x}\right)=\frac{{tan}\frac{\pi}{\mathrm{4}}−{tan}\:{x}}{\mathrm{1}+{tan}\frac{\pi}{\mathrm{4}}{tan}\:{x}}=\frac{\mathrm{1}−{tanx}}{\mathrm{1}+{tanx}}, \\ $$$${I}=\int_{\pi/\mathrm{4}} ^{\mathrm{0}} {arctan}\left(\frac{\mathrm{1}+\frac{\mathrm{1}−{tan}\:{x}}{\mathrm{1}+{tan}\:{x}}}{\:\sqrt{\mathrm{2}}}.\left(−{dx}\right)\right. \\ $$$$\:=\int_{\mathrm{0}} ^{\pi/\mathrm{4}} {arctan}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{1}+{tan}\:{x}}\right){dx} \\ $$$$\:=\int_{\mathrm{0}\:} ^{\pi/\mathrm{4}} {arcot}\:\left(\frac{\mathrm{1}+{tan}\:{x}}{\:\sqrt{\mathrm{2}}}\right){dx}\:\:,{since}\:{x}>\mathrm{0} \\ $$$$ \\ $$$$\:\:\:{I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \left({arctan}\left(\frac{\mathrm{1}+{tan}\:{x}}{\:\sqrt{\mathrm{2}}}\right)+{arcot}\left(\frac{\mathrm{1}+{tan}\:{x}}{\:\sqrt{\mathrm{2}}}\right)\right){dx} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \frac{\pi}{\mathrm{2}}{dx}\: \\ $$$$\:\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{16}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com