Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 192668 by mathocean1 last updated on 24/May/23

∫_0 ^4 (1/x)e^x dx − ∫_0 ^4 (1/x)e^((1/2)x) dx= ?

$$\int_{\mathrm{0}} ^{\mathrm{4}} \frac{\mathrm{1}}{{x}}{e}^{{x}} {dx}\:−\:\int_{\mathrm{0}} ^{\mathrm{4}} \frac{\mathrm{1}}{{x}}{e}^{\frac{\mathrm{1}}{\mathrm{2}}{x}} {dx}=\:? \\ $$

Answered by witcher3 last updated on 24/May/23

fals  ∫_0 ^1 (e^(kx) /x)dx not rieman integrabl but lesbegue integrable  cause ∀n∈Z_+ μ([0,(1/n)])=(1/n)→0for n→∞  ∀n∈N  ∫_(1/n) ^4 (e^x /x)dx=∫_0 ^4 (e^x /x)1_([(1/n),4]) ..exist for all n∈N

$$\mathrm{fals} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{e}^{\mathrm{kx}} }{\mathrm{x}}\mathrm{dx}\:\mathrm{not}\:\mathrm{rieman}\:\mathrm{integrabl}\:\mathrm{but}\:\mathrm{lesbegue}\:\mathrm{integrable} \\ $$$$\mathrm{cause}\:\forall\mathrm{n}\in\mathbb{Z}_{+} \mu\left(\left[\mathrm{0},\frac{\mathrm{1}}{\mathrm{n}}\right]\right)=\frac{\mathrm{1}}{\mathrm{n}}\rightarrow\mathrm{0for}\:\mathrm{n}\rightarrow\infty \\ $$$$\forall\mathrm{n}\in\mathbb{N} \\ $$$$\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{\mathrm{4}} \frac{\mathrm{e}^{\mathrm{x}} }{\mathrm{x}}\mathrm{dx}=\int_{\mathrm{0}} ^{\mathrm{4}} \frac{\mathrm{e}^{\mathrm{x}} }{\mathrm{x}}\mathrm{1}_{\left[\frac{\mathrm{1}}{\mathrm{n}},\mathrm{4}\right]} ..\mathrm{exist}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\in\mathbb{N} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by Frix last updated on 24/May/23

∫(e^x /x)dx=Ei (x) +C  ∫(e^(x/2) /x)dx=Ei ((x/2)) +C  You need to find a table for values of Ei (x)  The answer is ≈.747750730933

$$\int\frac{\mathrm{e}^{{x}} }{{x}}{dx}=\mathrm{Ei}\:\left({x}\right)\:+{C} \\ $$$$\int\frac{{e}^{\frac{{x}}{\mathrm{2}}} }{{x}}{dx}=\mathrm{Ei}\:\left(\frac{{x}}{\mathrm{2}}\right)\:+{C} \\ $$$$\mathrm{You}\:\mathrm{need}\:\mathrm{to}\:\mathrm{find}\:\mathrm{a}\:\mathrm{table}\:\mathrm{for}\:\mathrm{values}\:\mathrm{of}\:\mathrm{Ei}\:\left({x}\right) \\ $$$$\mathrm{The}\:\mathrm{answer}\:\mathrm{is}\:\approx.\mathrm{747750730933} \\ $$

Commented by mathocean1 last updated on 25/May/23

ok thanks

$${ok}\:{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com