Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 189769 by mathocean1 last updated on 21/Mar/23

∫_0 ^(3π) (√(a^2 sin^2 ((θ/3))+a^2 cos^2 ((θ/3))sin^4 ((θ/3)))) dθ  = ?

$$\int_{\mathrm{0}} ^{\mathrm{3}\pi} \sqrt{{a}^{\mathrm{2}} {sin}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{3}}\right)+{a}^{\mathrm{2}} {cos}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{3}}\right){sin}^{\mathrm{4}} \left(\frac{\theta}{\mathrm{3}}\right)}\:{d}\theta\:\:=\:? \\ $$

Commented by MJS_new last updated on 22/Mar/23

still not possible to get an exact solution  t=cos (θ/3) leads to 3∣a∣∫_(−1) ^1 (√(−t^4 +t^2 +1)) dt which  could be solved using elliptical functions but  in the end you get an approximate value

$$\mathrm{still}\:\mathrm{not}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{get}\:\mathrm{an}\:\mathrm{exact}\:\mathrm{solution} \\ $$$${t}=\mathrm{cos}\:\frac{\theta}{\mathrm{3}}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{3}\mid{a}\mid\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\sqrt{−{t}^{\mathrm{4}} +{t}^{\mathrm{2}} +\mathrm{1}}\:{dt}\:\mathrm{which} \\ $$$$\mathrm{could}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{using}\:\mathrm{elliptical}\:\mathrm{functions}\:\mathrm{but} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{end}\:\mathrm{you}\:\mathrm{get}\:\mathrm{an}\:\mathrm{approximate}\:\mathrm{value} \\ $$

Commented by mathocean1 last updated on 26/Mar/23

ok thanks

$${ok}\:{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com