| ||
Question Number 220896 by Nicholas666 last updated on 20/May/25 | ||
![]() | ||
$$ \\ $$$$\:\:\:\int\int\int_{\:\left[\mathrm{0},\infty\right]^{\:\mathrm{3}} } \frac{{x}^{\mathrm{2}} {y}^{\mathrm{2}} {z}^{\mathrm{2}} }{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \right)^{\mathrm{5}} }\:{dxdydz}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$ | ||
Answered by deleted50 last updated on 21/May/25 | ||
![]() | ||
$$\int\int\int_{\mathbb{R}^{\mathrm{3}} } \:\:\frac{\left({xyz}\right)^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\mathrm{5}} }\:\mathrm{d}{x}\mathrm{d}{y}\mathrm{d}{z}= \\ $$$${x}={r}\mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\rho\right) \\ $$$${y}={r}\mathrm{sin}\left(\theta\right)\mathrm{sin}\left(\rho\right) \\ $$$${z}={r}\mathrm{cos}\left(\theta\right) \\ $$$$\mid\mid\boldsymbol{{J}}\mid\mid=\mid\mid\frac{\partial\boldsymbol{\mathrm{x}}}{\partial\boldsymbol{\mathrm{r}}}\mid\mid\:\mathrm{d}\boldsymbol{\mathrm{r}}\:\rightarrow\:{r}^{\mathrm{2}} \mathrm{sin}\left(\theta\right)\mathrm{d}{r}\mathrm{d}\theta\mathrm{d}\rho \\ $$$$\int\int\int_{\mathcal{R}^{\mathrm{3}} } \:\frac{{r}^{\mathrm{8}} \mathrm{sin}^{\mathrm{5}} \left(\theta\right)\mathrm{cos}^{\mathrm{2}} \left(\theta\right)\mathrm{sin}^{\mathrm{2}} \left(\rho\right)\mathrm{cos}^{\mathrm{2}} \left(\rho\right)}{\left({r}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{5}} }\:\mathrm{d}{r}\mathrm{d}\theta\mathrm{d}\rho \\ $$$$=\frac{\mathrm{35}}{\mathrm{256}}\pi\int\int\:\:\mathrm{sin}^{\mathrm{5}} \left(\theta\right)\mathrm{cos}^{\mathrm{2}} \left(\theta\right)\mathrm{sin}^{\mathrm{2}} \left(\rho\right)\mathrm{cos}^{\mathrm{2}} \left(\rho\right)\:\mathrm{d}\theta\mathrm{d}\rho \\ $$$$\frac{\mathrm{35}}{\mathrm{256}}\pi\centerdot\frac{\mathrm{16}}{\mathrm{105}}\:\int\:\:\mathrm{sin}^{\mathrm{2}} \left(\rho\right)\mathrm{cos}^{\mathrm{2}} \left(\rho\right)\mathrm{d}\rho=\frac{\pi^{\mathrm{2}} }{\mathrm{1536}} \\ $$ | ||