Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 81615 by Zainal Arifin last updated on 14/Feb/20

 ∫_( 0) ^3  x (√(1+x)) dx =

$$\:\underset{\:\mathrm{0}} {\overset{\mathrm{3}} {\int}}\:{x}\:\sqrt{\mathrm{1}+{x}}\:{dx}\:= \\ $$

Answered by TANMAY PANACEA last updated on 14/Feb/20

t^2 =1+x→2tdt=dx  ∫_1 ^2 (t^2 −1)×t×2tdt  ∫_1 ^2 2(t^4 −t^2 )dt  2×∣(t^5 /5)−(t^3 /3)∣_1 ^2   2×[(((32)/5)−(1/5))−((8/3)−(1/3))]  2×(((31)/5)−(7/3))  2×(((93−35)/(15)))  2×((58)/(15))=((116)/(15))

$${t}^{\mathrm{2}} =\mathrm{1}+{x}\rightarrow\mathrm{2}{tdt}={dx} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \left({t}^{\mathrm{2}} −\mathrm{1}\right)×{t}×\mathrm{2}{tdt} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \mathrm{2}\left({t}^{\mathrm{4}} −{t}^{\mathrm{2}} \right){dt} \\ $$$$\mathrm{2}×\mid\frac{{t}^{\mathrm{5}} }{\mathrm{5}}−\frac{{t}^{\mathrm{3}} }{\mathrm{3}}\mid_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\mathrm{2}×\left[\left(\frac{\mathrm{32}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{5}}\right)−\left(\frac{\mathrm{8}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\right)\right] \\ $$$$\mathrm{2}×\left(\frac{\mathrm{31}}{\mathrm{5}}−\frac{\mathrm{7}}{\mathrm{3}}\right) \\ $$$$\mathrm{2}×\left(\frac{\mathrm{93}−\mathrm{35}}{\mathrm{15}}\right) \\ $$$$\mathrm{2}×\frac{\mathrm{58}}{\mathrm{15}}=\frac{\mathrm{116}}{\mathrm{15}} \\ $$

Commented by zainal tanjung last updated on 14/Feb/20

Thanks sir

$$\mathrm{Thanks}\:\mathrm{sir} \\ $$

Commented by TANMAY PANACEA last updated on 14/Feb/20

most welcome

$${most}\:{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com