Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137448 by liberty last updated on 03/Apr/21

∫_0 ^( 3/4) (dx/((x+1)(√(x^2 +1)))) ?

$$\int_{\mathrm{0}} ^{\:\mathrm{3}/\mathrm{4}} \frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\:? \\ $$

Answered by MJS_new last updated on 03/Apr/21

∫(dx/((x+1)(√(x^2 +1))))=       [t=x+(√(x^2 +1)) ⇔ x=((t^2 −1)/(2t)) → dx=((√(x^2 +1))/(x+(√(x^2 +1))))dt]  =2∫(dt/(t^2 +2t−1))=−((√2)/2)ln ((t+1+(√2))/(t+1−(√2))) =  =−((√2)/2)ln ((−x+1+(√(2(x^2 +1))))/(x+1))  ⇒ answer is (ln (1+2(√2)) −(1/2)ln 7)(√2)

$$\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}= \\ $$$$\:\:\:\:\:\left[{t}={x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:\Leftrightarrow\:{x}=\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{t}}\:\rightarrow\:{dx}=\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{2}{t}−\mathrm{1}}=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{ln}\:\frac{{t}+\mathrm{1}+\sqrt{\mathrm{2}}}{{t}+\mathrm{1}−\sqrt{\mathrm{2}}}\:= \\ $$$$=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{ln}\:\frac{−{x}+\mathrm{1}+\sqrt{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}}{{x}+\mathrm{1}} \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\left(\mathrm{ln}\:\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\right)\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{7}\right)\sqrt{\mathrm{2}} \\ $$

Commented by liberty last updated on 03/Apr/21

Commented by liberty last updated on 03/Apr/21

but i got in trigonometry

$${but}\:{i}\:{got}\:{in}\:{trigonometry} \\ $$

Answered by EDWIN88 last updated on 03/Apr/21

E= ∫_0 ^( 3/4)  (dx/((x+1)(√(x^2 +1))))  let x = tan t ⇒dx = sec^2  t dt   E=∫^   ((sec^2 t )/((tan t +1)(√(1+tan^2 t)))) dt  E= ∫ (dt/( (√2) sec (t−(π/4)))) = (1/( (√2))) ln ∣sec (t−(π/4))+tan (t−(π/4))∣+C  = (1/( (√2))) ln ∣ (((√2) sec t+tan t−1)/(1+tan t))∣ + C  =(1/( (√2))) ln ∣(((√(2+2x^2 )) +x−1)/(1+x)) ∣ + C  Now ∫_0 ^( 3/4)  (dx/((x+1)(√(1+x^2 ))))   = (1/( (√2))) [ ln (2(√(14)) −1)−ln (7)−ln ((√2) −1) ]  ≈ 0.569006

$$\mathrm{E}=\:\int_{\mathrm{0}} ^{\:\mathrm{3}/\mathrm{4}} \:\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{let}\:\mathrm{x}\:=\:\mathrm{tan}\:\mathrm{t}\:\Rightarrow\mathrm{dx}\:=\:\mathrm{sec}^{\mathrm{2}} \:\mathrm{t}\:\mathrm{dt}\: \\ $$$$\mathrm{E}=\int^{\:} \:\frac{\mathrm{sec}\:^{\mathrm{2}} \mathrm{t}\:}{\left(\mathrm{tan}\:\mathrm{t}\:+\mathrm{1}\right)\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \mathrm{t}}}\:\mathrm{dt} \\ $$$$\mathrm{E}=\:\int\:\frac{\mathrm{dt}}{\:\sqrt{\mathrm{2}}\:\mathrm{sec}\:\left(\mathrm{t}−\frac{\pi}{\mathrm{4}}\right)}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{ln}\:\mid\mathrm{sec}\:\left(\mathrm{t}−\frac{\pi}{\mathrm{4}}\right)+\mathrm{tan}\:\left(\mathrm{t}−\frac{\pi}{\mathrm{4}}\right)\mid+\mathrm{C} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{ln}\:\mid\:\frac{\sqrt{\mathrm{2}}\:\mathrm{sec}\:\mathrm{t}+\mathrm{tan}\:\mathrm{t}−\mathrm{1}}{\mathrm{1}+\mathrm{tan}\:\mathrm{t}}\mid\:+\:\mathrm{C} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{ln}\:\mid\frac{\sqrt{\mathrm{2}+\mathrm{2x}^{\mathrm{2}} }\:+\mathrm{x}−\mathrm{1}}{\mathrm{1}+\mathrm{x}}\:\mid\:+\:\mathrm{C} \\ $$$$\mathrm{Now}\:\int_{\mathrm{0}} ^{\:\mathrm{3}/\mathrm{4}} \:\frac{{dx}}{\left({x}+\mathrm{1}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\: \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\left[\:\mathrm{ln}\:\left(\mathrm{2}\sqrt{\mathrm{14}}\:−\mathrm{1}\right)−\mathrm{ln}\:\left(\mathrm{7}\right)−\mathrm{ln}\:\left(\sqrt{\mathrm{2}}\:−\mathrm{1}\right)\:\right] \\ $$$$\approx\:\mathrm{0}.\mathrm{569006} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com