Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 77675 by TawaTawa last updated on 08/Jan/20

∫_( 0) ^(  ∞)  3(2x − (3/x))^2  dx

$$\int_{\:\mathrm{0}} ^{\:\:\infty} \:\mathrm{3}\left(\mathrm{2x}\:−\:\frac{\mathrm{3}}{\mathrm{x}}\right)^{\mathrm{2}} \:\mathrm{dx} \\ $$

Answered by mind is power last updated on 09/Jan/20

diverge   use that[(2x−(3/x))]^2 ≥1,∀x≥4   ⇒∫_0 ^(+∞) 3(2x−(3/x))^2 dx≥∫_4 ^(+∞) 3.4dx=∫_3 ^(+∞) 12dx=+∞

$$\mathrm{diverge}\: \\ $$$$\mathrm{use}\:\mathrm{that}\left[\left(\mathrm{2x}−\frac{\mathrm{3}}{\mathrm{x}}\right)\right]^{\mathrm{2}} \geqslant\mathrm{1},\forall\mathrm{x}\geqslant\mathrm{4}\: \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{+\infty} \mathrm{3}\left(\mathrm{2x}−\frac{\mathrm{3}}{\mathrm{x}}\right)^{\mathrm{2}} \mathrm{dx}\geqslant\int_{\mathrm{4}} ^{+\infty} \mathrm{3}.\mathrm{4dx}=\int_{\mathrm{3}} ^{+\infty} \mathrm{12dx}=+\infty \\ $$

Commented by TawaTawa last updated on 09/Jan/20

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com