Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 155017 by SANOGO last updated on 24/Sep/21

∫_0 ^(3/2) E(x^2 )dx; avec E(x) la partie entiere

$$\int_{\mathrm{0}} ^{\frac{\mathrm{3}}{\mathrm{2}}} {E}\left({x}^{\mathrm{2}} \right){dx};\:{avec}\:{E}\left({x}\right)\:{la}\:{partie}\:{entiere} \\ $$

Answered by puissant last updated on 24/Sep/21

K=∫_0 ^(3/2) E(x^2 )dx  =∫_0 ^1 E(x^2 )dx+∫_1 ^(√2) E(x^2 )dx+∫_(√2) ^(3/2) E(x^2 )dx  =0(1−0)+1((√2)−1)+2((3/2)−(√2))  =0+(√2)−1+3−2(√2) = 2−(√2)..      ∴∵ K =∫_0 ^(3/2) E(x^2 )dx = 2−(√2)..

$${K}=\int_{\mathrm{0}} ^{\frac{\mathrm{3}}{\mathrm{2}}} {E}\left({x}^{\mathrm{2}} \right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {E}\left({x}^{\mathrm{2}} \right){dx}+\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} {E}\left({x}^{\mathrm{2}} \right){dx}+\int_{\sqrt{\mathrm{2}}} ^{\frac{\mathrm{3}}{\mathrm{2}}} {E}\left({x}^{\mathrm{2}} \right){dx} \\ $$$$=\mathrm{0}\left(\mathrm{1}−\mathrm{0}\right)+\mathrm{1}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)+\mathrm{2}\left(\frac{\mathrm{3}}{\mathrm{2}}−\sqrt{\mathrm{2}}\right) \\ $$$$=\mathrm{0}+\sqrt{\mathrm{2}}−\mathrm{1}+\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\:=\:\mathrm{2}−\sqrt{\mathrm{2}}.. \\ $$$$\:\:\:\:\therefore\because\:{K}\:=\int_{\mathrm{0}} ^{\frac{\mathrm{3}}{\mathrm{2}}} {E}\left({x}^{\mathrm{2}} \right){dx}\:=\:\mathrm{2}−\sqrt{\mathrm{2}}.. \\ $$

Commented by SANOGO last updated on 24/Sep/21

merci bien courage

$${merci}\:{bien}\:{courage} \\ $$

Commented by puissant last updated on 24/Sep/21

����������������

Commented by tabata last updated on 25/Sep/21

sir how you give the interval in this form  can you give me the formulla of E(x) ?

$${sir}\:{how}\:{you}\:{give}\:{the}\:{interval}\:{in}\:{this}\:{form} \\ $$$${can}\:{you}\:{give}\:{me}\:{the}\:{formulla}\:{of}\:{E}\left({x}\right)\:? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com