Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55237 by peter frank last updated on 19/Feb/19

∫_0 ^3 ∫_1 ^2 (x^3 +y^2 )dxdy

$$\int_{\mathrm{0}} ^{\mathrm{3}} \int_{\mathrm{1}} ^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{2}} \right)\mathrm{dxdy} \\ $$

Commented by Abdo msup. last updated on 20/Feb/19

I =∫_0 ^3  A(y)dy with A(y)=∫_1 ^2 (x^3  +y^2 )dx  =∫_1 ^2  x^3 dx +y^2  ∫_1 ^2 dx =[(x^4 /4)]_1 ^2  +y^2   =(1/4)( 2^4 −1) +y^2  =((15)/4) +y^2  ⇒  I =∫_0 ^3  (((15)/4)+y^2 )dy =((45)/4) +[(1/3)y^3 ]_0 ^3   =((45)/4) +9 =((45+36)/4) =((81)/4)

$${I}\:=\int_{\mathrm{0}} ^{\mathrm{3}} \:{A}\left({y}\right){dy}\:{with}\:{A}\left({y}\right)=\int_{\mathrm{1}} ^{\mathrm{2}} \left({x}^{\mathrm{3}} \:+{y}^{\mathrm{2}} \right){dx} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{2}} \:{x}^{\mathrm{3}} {dx}\:+{y}^{\mathrm{2}} \:\int_{\mathrm{1}} ^{\mathrm{2}} {dx}\:=\left[\frac{{x}^{\mathrm{4}} }{\mathrm{4}}\right]_{\mathrm{1}} ^{\mathrm{2}} \:+{y}^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\:\mathrm{2}^{\mathrm{4}} −\mathrm{1}\right)\:+{y}^{\mathrm{2}} \:=\frac{\mathrm{15}}{\mathrm{4}}\:+{y}^{\mathrm{2}} \:\Rightarrow \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{3}} \:\left(\frac{\mathrm{15}}{\mathrm{4}}+{y}^{\mathrm{2}} \right){dy}\:=\frac{\mathrm{45}}{\mathrm{4}}\:+\left[\frac{\mathrm{1}}{\mathrm{3}}{y}^{\mathrm{3}} \right]_{\mathrm{0}} ^{\mathrm{3}} \\ $$$$=\frac{\mathrm{45}}{\mathrm{4}}\:+\mathrm{9}\:=\frac{\mathrm{45}+\mathrm{36}}{\mathrm{4}}\:=\frac{\mathrm{81}}{\mathrm{4}} \\ $$

Answered by kaivan.ahmadi last updated on 20/Feb/19

∫_0 ^3 ((x^4 /4)+y^2 x]_1 ^2 )dy=∫_0 ^3 (4+2y^2 −(1/4)−y^2 )dy=  ∫_0 ^3 (y^2 +((15)/4))dy=(y^3 /3)+((15)/4)y]_0 ^3 =9+((45)/4)=((81)/4)

$$\left.\int_{\mathrm{0}} ^{\mathrm{3}} \left(\frac{{x}^{\mathrm{4}} }{\mathrm{4}}+{y}^{\mathrm{2}} {x}\right]_{\mathrm{1}} ^{\mathrm{2}} \right){dy}=\int_{\mathrm{0}} ^{\mathrm{3}} \left(\mathrm{4}+\mathrm{2}{y}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}−{y}^{\mathrm{2}} \right){dy}= \\ $$$$\left.\int_{\mathrm{0}} ^{\mathrm{3}} \left({y}^{\mathrm{2}} +\frac{\mathrm{15}}{\mathrm{4}}\right){dy}=\frac{{y}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{15}}{\mathrm{4}}{y}\right]_{\mathrm{0}} ^{\mathrm{3}} =\mathrm{9}+\frac{\mathrm{45}}{\mathrm{4}}=\frac{\mathrm{81}}{\mathrm{4}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com