Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 213518 by issac last updated on 07/Nov/24

∫_0 ^( 2π)  ((z∙sin(z))/(1+cos^2 (z))) dz  ∫_( ∣z∣=2)  (1/(z^2 +1)) dz  ∫_( ∣z∣=2)  ((sin(z))/(z^2 +1)) dz

$$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:\frac{{z}\centerdot\mathrm{sin}\left({z}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left({z}\right)}\:\mathrm{d}{z} \\ $$$$\int_{\:\mid{z}\mid=\mathrm{2}} \:\frac{\mathrm{1}}{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z} \\ $$$$\int_{\:\mid{z}\mid=\mathrm{2}} \:\frac{\mathrm{sin}\left({z}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z} \\ $$

Answered by Berbere last updated on 07/Nov/24

∫_0 ^π ((zsin(z))/(1+cos^2 (z)))+∫_0 ^π ((sin(π+z)(π+z)dz)/(1+coz^2 (z)))  =−π∫_0 ^π ((sin(z))/(1+cos^2 (z)))dz=πtan^(−1) (cos(z))]_0 ^π   =−(π^2 /2)  2..=2iπ Res((1/(z^2 +1)),i;−i}=2iπ.((1/(2i))−(1/(2i)))=0  ..3  =∫((sin(z))/(1+z^2 ))dz=2iπ Res(((sin(z))/(1+z^2 )),z=i,−i)  =2iπ[((sin(i))/(2i))+((sin(−i))/(−2i)))  =2πsin(i)=−2πsh(1)

$$\int_{\mathrm{0}} ^{\pi} \frac{{zsin}\left({z}\right)}{\mathrm{1}+{cos}^{\mathrm{2}} \left({z}\right)}+\int_{\mathrm{0}} ^{\pi} \frac{{sin}\left(\pi+\mathrm{z}\right)\left(\pi+{z}\right){dz}}{\mathrm{1}+{coz}^{\mathrm{2}} \left({z}\right)} \\ $$$$\left.=−\pi\int_{\mathrm{0}} ^{\pi} \frac{{sin}\left({z}\right)}{\mathrm{1}+{cos}^{\mathrm{2}} \left({z}\right)}{dz}=\pi\mathrm{tan}^{−\mathrm{1}} \left({cos}\left({z}\right)\right)\right]_{\mathrm{0}} ^{\pi} \\ $$$$=−\frac{\pi^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{2}..=\mathrm{2}{i}\pi\:{Res}\left(\frac{\mathrm{1}}{{z}^{\mathrm{2}} +\mathrm{1}},{i};−{i}\right\}=\mathrm{2}{i}\pi.\left(\frac{\mathrm{1}}{\mathrm{2}{i}}−\frac{\mathrm{1}}{\mathrm{2}{i}}\right)=\mathrm{0} \\ $$$$..\mathrm{3} \\ $$$$=\int\frac{{sin}\left({z}\right)}{\mathrm{1}+{z}^{\mathrm{2}} }{dz}=\mathrm{2}{i}\pi\:{Res}\left(\frac{{sin}\left({z}\right)}{\mathrm{1}+{z}^{\mathrm{2}} },{z}={i},−{i}\right) \\ $$$$=\mathrm{2}{i}\pi\left[\frac{{sin}\left({i}\right)}{\mathrm{2}{i}}+\frac{{sin}\left(−{i}\right)}{−\mathrm{2}{i}}\right) \\ $$$$=\mathrm{2}\pi{sin}\left({i}\right)=−\mathrm{2}\pi{sh}\left(\mathrm{1}\right) \\ $$$$ \\ $$

Commented by York12 last updated on 08/Nov/24

What′s your instgram or facebook account  ,please sir

$$\mathrm{What}'\mathrm{s}\:\mathrm{your}\:\mathrm{instgram}\:\mathrm{or}\:\mathrm{facebook}\:\mathrm{account} \\ $$$$,\mathrm{please}\:\mathrm{sir} \\ $$

Commented by issac last updated on 08/Nov/24

thx...

$$\mathrm{thx}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com