Question Number 216695 by sniper237 last updated on 16/Feb/25 | ||
![]() | ||
$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{\mathrm{1}+{sinxcosx}}\overset{?} {=}\:\frac{\mathrm{4}\pi{ln}\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:\: \\ $$ | ||
Answered by Ghisom last updated on 16/Feb/25 | ||
![]() | ||
$$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\frac{{dx}}{\mathrm{1}+\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}=\mathrm{8}\underset{\pi/\mathrm{4}} {\overset{\mathrm{3}\pi/\mathrm{4}} {\int}}\frac{{dx}}{\mathrm{2}+\mathrm{sin}\:\mathrm{2}{x}}= \\ $$$$=\mathrm{8}\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2}{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\right] \\ $$$$=\mathrm{8}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{3}}=\frac{\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{3}}\left[\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}{t}}{\mathrm{3}}\right]_{\mathrm{0}} ^{\infty} = \\ $$$$=\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$ | ||