Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 216695 by sniper237 last updated on 16/Feb/25

∫_0 ^(2π) (dx/(1+sinxcosx))=^?  ((4πln2)/( (√3)))

$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{\mathrm{1}+{sinxcosx}}\overset{?} {=}\:\frac{\mathrm{4}\pi{ln}\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:\: \\ $$

Answered by Ghisom last updated on 16/Feb/25

∫_0 ^(2π) (dx/(1+sin x cos x))=8∫_(π/4) ^(3π/4) (dx/(2+sin 2x))=  =8∫_0 ^(π/2) (dx/(2+cos 2x))=       [t=tan x]  =8∫_0 ^∞ (dt/(t^2 +3))=((8(√3))/3)[arctan (((√3)t)/3)]_0 ^∞ =  =((4π(√3))/3)

$$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\frac{{dx}}{\mathrm{1}+\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}=\mathrm{8}\underset{\pi/\mathrm{4}} {\overset{\mathrm{3}\pi/\mathrm{4}} {\int}}\frac{{dx}}{\mathrm{2}+\mathrm{sin}\:\mathrm{2}{x}}= \\ $$$$=\mathrm{8}\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2}{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\right] \\ $$$$=\mathrm{8}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{3}}=\frac{\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{3}}\left[\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}{t}}{\mathrm{3}}\right]_{\mathrm{0}} ^{\infty} = \\ $$$$=\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com