None Questions

Question Number 153016 by joki last updated on 04/Sep/21

$$\int_{\mathrm{0}} ^{\mathrm{2}} \mathrm{xe}^{\mathrm{4}−\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\$$

Commented by mr W last updated on 04/Sep/21

$$=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{2}} {e}^{\mathrm{4}−{x}^{\mathrm{2}} } {d}\left(\mathrm{4}−{x}^{\mathrm{2}} \right) \\$$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left[{e}^{\mathrm{4}−{x}^{\mathrm{2}} } \right]_{\mathrm{0}} ^{\mathrm{2}} \\$$$$=−\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{1}−{e}^{\mathrm{4}} \right] \\$$$$=\frac{{e}^{\mathrm{4}} −\mathrm{1}}{\mathrm{2}} \\$$

Commented by peter frank last updated on 04/Sep/21

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}\:\mathrm{for}\:\mathrm{confirmation} \\$$

Answered by peter frank last updated on 04/Sep/21

$$\mathrm{u}=\mathrm{4}−\mathrm{x}^{\mathrm{2}} \\$$$$\mathrm{du}=−\mathrm{2xdx} \\$$$$\mathrm{dx}=−\frac{\mathrm{du}}{\mathrm{2x}} \\$$$$\int_{\mathrm{0}} ^{\mathrm{2}} \mathrm{xe}^{\mathrm{u}} −\frac{\mathrm{du}}{\mathrm{2x}} \\$$$$\frac{\mathrm{1}}{\mathrm{2}}\int−\mathrm{e}^{\mathrm{u}} \mathrm{du} \\$$