Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67835 by mind is power last updated on 01/Sep/19

∫_0 ^2 x(8−x^3 )^(1/3) dx

$$\int_{\mathrm{0}} ^{\mathrm{2}} {x}\left(\mathrm{8}−{x}^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} {dx} \\ $$

Answered by MJS last updated on 01/Sep/19

∫x(8−x^3 )^(1/3) =       [t=(((8−x^3 )^(1/3) )/x) → dx=−((x^2 (8−x^3 )^(2/3) )/8)dt]  =−8∫(t^3 /((t^3 +1)^2 ))dt=       now decompose and solve; I get  =((8t)/(3(t^3 +1)))+(4/9)ln ((t^2 −t+1)/((t+1)^2 )) −((8(√3))/9)arctan ((2t−1)/(√3)) =  =(1/3)x^2 (8−x^3 )^(1/3) +(4/9)ln ((x^2 −x(8−x^3 )^(1/3) +(8−x^3 )^(2/3) )/((x+(8−x^3 )^(1/3) )^2 )) −((8(√3))/9)arctan ((2(8−x^3 )^(1/3) −x)/((√3)x)) +Cg    ∫_0 ^2 x(8−x^3 )^(1/3) =((16(√3))/(27))π

$$\int{x}\left(\mathrm{8}−{x}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{3}} = \\ $$$$\:\:\:\:\:\left[{t}=\frac{\left(\mathrm{8}−{x}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{3}} }{{x}}\:\rightarrow\:{dx}=−\frac{{x}^{\mathrm{2}} \left(\mathrm{8}−{x}^{\mathrm{3}} \right)^{\mathrm{2}/\mathrm{3}} }{\mathrm{8}}{dt}\right] \\ $$$$=−\mathrm{8}\int\frac{{t}^{\mathrm{3}} }{\left({t}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} }{dt}= \\ $$$$\:\:\:\:\:\mathrm{now}\:\mathrm{decompose}\:\mathrm{and}\:\mathrm{solve};\:\mathrm{I}\:\mathrm{get} \\ $$$$=\frac{\mathrm{8}{t}}{\mathrm{3}\left({t}^{\mathrm{3}} +\mathrm{1}\right)}+\frac{\mathrm{4}}{\mathrm{9}}\mathrm{ln}\:\frac{{t}^{\mathrm{2}} −{t}+\mathrm{1}}{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }\:−\frac{\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\:\frac{\mathrm{2}{t}−\mathrm{1}}{\sqrt{\mathrm{3}}}\:= \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{2}} \left(\mathrm{8}−{x}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{3}} +\frac{\mathrm{4}}{\mathrm{9}}\mathrm{ln}\:\frac{{x}^{\mathrm{2}} −{x}\left(\mathrm{8}−{x}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{3}} +\left(\mathrm{8}−{x}^{\mathrm{3}} \right)^{\mathrm{2}/\mathrm{3}} }{\left({x}+\left(\mathrm{8}−{x}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{3}} \right)^{\mathrm{2}} }\:−\frac{\mathrm{8}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\:\frac{\mathrm{2}\left(\mathrm{8}−{x}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{3}} −{x}}{\sqrt{\mathrm{3}}{x}}\:+{Cg} \\ $$$$ \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}{x}\left(\mathrm{8}−{x}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{3}} =\frac{\mathrm{16}\sqrt{\mathrm{3}}}{\mathrm{27}}\pi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com