Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 24825 by A1B1C1D1 last updated on 27/Nov/17

∫_0 ^( 2) ∫_x ^(  3x − x^2 )  6x^2  − 2xy dy dx = ?

$$\int_{\mathrm{0}} ^{\:\mathrm{2}} \int_{\mathrm{x}} ^{\:\:\mathrm{3x}\:−\:\mathrm{x}^{\mathrm{2}} } \:\mathrm{6x}^{\mathrm{2}} \:−\:\mathrm{2xy}\:\mathrm{dy}\:\mathrm{dx}\:=\:? \\ $$

Commented by 1kanika# last updated on 27/Nov/17

32.

$$\mathrm{32}. \\ $$

Commented by A1B1C1D1 last updated on 27/Nov/17

Thank you.

$$\mathrm{Thank}\:\mathrm{you}. \\ $$

Commented by maxmathsup by imad last updated on 24/May/19

I =∫_0 ^2   A(x)dx  with A(x) =∫_x ^(3x−x^2 ) (6x^2 −2xy)dy ⇒  A(x) =6x^2 (3x−x^2 −x) −2x ∫_x ^(3x−x^2 ) ydy  =12x^3  −6x^4  −x[y^2 ]_x ^(3x−x^2 )  =12x^3 −6x^4  −x(  (3x−x^2 )^2 −x^2 )  =12x^3 −6x^4  −x( 9x^2 −6x^3  +x^4 −x^2 )  =12x^3 −6x^4 −8x^3 +6x^4  −x^5  =4x^3  −x^5  ⇒ I =∫_0 ^2  (4x^3 −x^5 )dx  =[x^4 −(1/6)x^6 ]_0 ^2  =2^4 −(2^6 /6) =16−((16.4)/6) =16 −((16.2)/3) =((48−32)/3) =((16)/3) .

$${I}\:=\int_{\mathrm{0}} ^{\mathrm{2}} \:\:{A}\left({x}\right){dx}\:\:{with}\:{A}\left({x}\right)\:=\int_{{x}} ^{\mathrm{3}{x}−{x}^{\mathrm{2}} } \left(\mathrm{6}{x}^{\mathrm{2}} −\mathrm{2}{xy}\right){dy}\:\Rightarrow \\ $$$${A}\left({x}\right)\:=\mathrm{6}{x}^{\mathrm{2}} \left(\mathrm{3}{x}−{x}^{\mathrm{2}} −{x}\right)\:−\mathrm{2}{x}\:\int_{{x}} ^{\mathrm{3}{x}−{x}^{\mathrm{2}} } {ydy} \\ $$$$=\mathrm{12}{x}^{\mathrm{3}} \:−\mathrm{6}{x}^{\mathrm{4}} \:−{x}\left[{y}^{\mathrm{2}} \right]_{{x}} ^{\mathrm{3}{x}−{x}^{\mathrm{2}} } \:=\mathrm{12}{x}^{\mathrm{3}} −\mathrm{6}{x}^{\mathrm{4}} \:−{x}\left(\:\:\left(\mathrm{3}{x}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} −{x}^{\mathrm{2}} \right) \\ $$$$=\mathrm{12}{x}^{\mathrm{3}} −\mathrm{6}{x}^{\mathrm{4}} \:−{x}\left(\:\mathrm{9}{x}^{\mathrm{2}} −\mathrm{6}{x}^{\mathrm{3}} \:+{x}^{\mathrm{4}} −{x}^{\mathrm{2}} \right) \\ $$$$=\mathrm{12}{x}^{\mathrm{3}} −\mathrm{6}{x}^{\mathrm{4}} −\mathrm{8}{x}^{\mathrm{3}} +\mathrm{6}{x}^{\mathrm{4}} \:−{x}^{\mathrm{5}} \:=\mathrm{4}{x}^{\mathrm{3}} \:−{x}^{\mathrm{5}} \:\Rightarrow\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{2}} \:\left(\mathrm{4}{x}^{\mathrm{3}} −{x}^{\mathrm{5}} \right){dx} \\ $$$$=\left[{x}^{\mathrm{4}} −\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{6}} \right]_{\mathrm{0}} ^{\mathrm{2}} \:=\mathrm{2}^{\mathrm{4}} −\frac{\mathrm{2}^{\mathrm{6}} }{\mathrm{6}}\:=\mathrm{16}−\frac{\mathrm{16}.\mathrm{4}}{\mathrm{6}}\:=\mathrm{16}\:−\frac{\mathrm{16}.\mathrm{2}}{\mathrm{3}}\:=\frac{\mathrm{48}−\mathrm{32}}{\mathrm{3}}\:=\frac{\mathrm{16}}{\mathrm{3}}\:. \\ $$

Answered by ajfour last updated on 27/Nov/17

∫_0 ^(  2) [6x^2 y−xy^2 ]∣_x ^(3x−x^2 ) dx  =∫_0 ^(  2) 6x^2 (2x−x^2 )dx−∫_0 ^(  2) x[(x^4 −6x^3 +8x^2 ]dx  =[3x^4 −(6/5)x^5 −(x^6 /6)+(6/5)x^5 −2x^4 ]∣_0 ^2   =16−((32)/3)= ((16)/3) .

$$\int_{\mathrm{0}} ^{\:\:\mathrm{2}} \left[\mathrm{6}{x}^{\mathrm{2}} {y}−{xy}^{\mathrm{2}} \right]\mid_{{x}} ^{\mathrm{3}{x}−{x}^{\mathrm{2}} } {dx} \\ $$$$=\int_{\mathrm{0}} ^{\:\:\mathrm{2}} \mathrm{6}{x}^{\mathrm{2}} \left(\mathrm{2}{x}−{x}^{\mathrm{2}} \right){dx}−\int_{\mathrm{0}} ^{\:\:\mathrm{2}} {x}\left[\left({x}^{\mathrm{4}} −\mathrm{6}{x}^{\mathrm{3}} +\mathrm{8}{x}^{\mathrm{2}} \right]{dx}\right. \\ $$$$=\left[\mathrm{3}{x}^{\mathrm{4}} −\frac{\mathrm{6}}{\mathrm{5}}{x}^{\mathrm{5}} −\frac{{x}^{\mathrm{6}} }{\mathrm{6}}+\frac{\mathrm{6}}{\mathrm{5}}{x}^{\mathrm{5}} −\mathrm{2}{x}^{\mathrm{4}} \right]\mid_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$=\mathrm{16}−\frac{\mathrm{32}}{\mathrm{3}}=\:\frac{\mathrm{16}}{\mathrm{3}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com