Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 17204 by Arnab Maiti last updated on 02/Jul/17

∫_0 ^( (Π/2)) sinθ cosθ(a^2 sin^2 θ+b^2 cos^2 θ)^(1/2) dθ

$$\int_{\mathrm{0}} ^{\:\frac{\Pi}{\mathrm{2}}} \mathrm{sin}\theta\:\mathrm{cos}\theta\left(\mathrm{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \theta+\mathrm{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \theta\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{d}\theta \\ $$

Answered by prakash jain last updated on 02/Jul/17

sin^2 θ=((1−cos 2θ)/2)  cos^2 θ=((1+cos 2θ)/2)  ∫((sin 2θ)/2)((a^2 /2)(1−cos 2θ)+(b^2 /2)(1+cos 2θ))^(1/2) dθ  cos 2θ=t⇒−2sin 2θdθ=dt  θ=0⇒t=1,θ=(π/2)⇒t=−1  =−(1/(4(√2)))∫_1 ^(−1) (a^2 +b^2 +(b^2 −a^2 )t)^(1/2) dt  =(1/(4(√2)))∫_(−1) ^1 (a^2 +b^2 +(b^2 −a^2 )t)^(1/2) dt  =(1/(4(b^2 −a^2 )(√2)))∙(2/3)[(a^2 +b^2 +(b^2 −a^2 )t)^(3/2) ]_(−1) ^1    =(((b^3 −a^3 )2(√2))/((b^2 −a^2 )6(√2))) =(((b^3 −a^3 ))/(3(b^2 −a^2 )))

$$\mathrm{sin}^{\mathrm{2}} \theta=\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{2}} \\ $$$$\mathrm{cos}^{\mathrm{2}} \theta=\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{2}} \\ $$$$\int\frac{\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}}\left(\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta\right)+\frac{{b}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta\right)\right)^{\mathrm{1}/\mathrm{2}} {d}\theta \\ $$$$\mathrm{cos}\:\mathrm{2}\theta={t}\Rightarrow−\mathrm{2sin}\:\mathrm{2}\theta{d}\theta={dt} \\ $$$$\theta=\mathrm{0}\Rightarrow{t}=\mathrm{1},\theta=\frac{\pi}{\mathrm{2}}\Rightarrow{t}=−\mathrm{1} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\int_{\mathrm{1}} ^{−\mathrm{1}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right){t}\right)^{\mathrm{1}/\mathrm{2}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\int_{−\mathrm{1}} ^{\mathrm{1}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right){t}\right)^{\mathrm{1}/\mathrm{2}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)\sqrt{\mathrm{2}}}\centerdot\frac{\mathrm{2}}{\mathrm{3}}\left[\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right){t}\right)^{\mathrm{3}/\mathrm{2}} \right]_{−\mathrm{1}} ^{\mathrm{1}} \: \\ $$$$=\frac{\left({b}^{\mathrm{3}} −{a}^{\mathrm{3}} \right)\mathrm{2}\sqrt{\mathrm{2}}}{\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)\mathrm{6}\sqrt{\mathrm{2}}}\:=\frac{\left({b}^{\mathrm{3}} −{a}^{\mathrm{3}} \right)}{\mathrm{3}\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)} \\ $$

Commented by Arnab Maiti last updated on 02/Jul/17

Awesome process ! I really impressed.

$$\mathrm{Awesome}\:\mathrm{process}\:!\:\mathrm{I}\:\mathrm{really}\:\mathrm{impressed}. \\ $$

Answered by Abbas-Nahi last updated on 03/Jul/17

    let u=a^2 sin^2 θ +b^2 cos^2 θ         du=2a^2 sin θcos θ−2b^2 cos θsin θ dθ        du=2(a^2 −b^2 )sin θcos θ dθ    ⇒sin θcos θ dθ=(1/(2(a^2 −b^2 ))) du  =∫_0 ^(Π/2) (1/(2(a^2 −b^2 ))) (u)^(1/2) du  =(1/(3(a^2 −b^2 ))) [u^(3/2) ]_0 ^(Π/2) =(1/(3(a^2 −b^2 )))[(√((a^2 sin^2 θ+b^2 cos^2 θ)^(3  )   ))]_0 ^(Π/2)   =(1/(3(a^2 −b^2 )))((√((a^2 )^3 )) −(√((b^2 )^3 )) )  =((a^3 −b^3 )/(3(a^2 −b^2 )))

$$ \\ $$$$ \\ $$$${let}\:{u}={a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \theta\:+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \theta\:\: \\ $$$$\:\:\:\:\:{du}=\mathrm{2}{a}^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta−\mathrm{2}{b}^{\mathrm{2}} \mathrm{cos}\:\theta\mathrm{sin}\:\theta\:{d}\theta \\ $$$$\:\:\:\:\:\:{du}=\mathrm{2}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{sin}\:\theta\mathrm{cos}\:\theta\:{d}\theta \\ $$$$\:\:\Rightarrow\mathrm{sin}\:\theta\mathrm{cos}\:\theta\:{d}\theta=\frac{\mathrm{1}}{\mathrm{2}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}\:{du} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \frac{\mathrm{1}}{\mathrm{2}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}\:\left({u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}\:\left[{u}^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} =\frac{\mathrm{1}}{\mathrm{3}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}\left[\sqrt{\left({a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \theta\right)^{\mathrm{3}\:\:} \:\:}\right]_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}\left(\sqrt{\left({a}^{\mathrm{2}} \right)^{\mathrm{3}} }\:−\sqrt{\left({b}^{\mathrm{2}} \right)^{\mathrm{3}} }\:\right) \\ $$$$=\frac{{a}^{\mathrm{3}} −{b}^{\mathrm{3}} }{\mathrm{3}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)} \\ $$

Commented by Arnab Maiti last updated on 03/Jul/17

Excellent!!!

$$\mathrm{Excellent}!!! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com