Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 94948 by rb222 last updated on 22/May/20

∫_0 ^((√(2 ln (3))) ) xe^(x^2 /2)  dx = . . .

$$\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}\:{ln}\:\left(\mathrm{3}\right)}\:} {xe}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \:{dx}\:=\:.\:.\:. \\ $$

Commented by Tony Lin last updated on 22/May/20

let (x^2 /2)=u, du=xdx  ∫_0 ^(ln3) e^u du  =3−1=2

$${let}\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}={u},\:{du}={xdx} \\ $$$$\int_{\mathrm{0}} ^{{ln}\mathrm{3}} {e}^{{u}} {du} \\ $$$$=\mathrm{3}−\mathrm{1}=\mathrm{2} \\ $$

Commented by rb222 last updated on 22/May/20

thanks sir

$${thanks}\:{sir} \\ $$

Commented by john santu last updated on 22/May/20

∫ x.e^(x^2 /2)  dx = ∫e^((1/2)x^2 )  d((1/2)x^2 )  = e^((1/2)x^2 )   then ∫_0 ^(√(2 ln(3))) x.e^((1/2)x^2 )  dx = [ e^((1/2)x^2 )  ]_( 0) ^(√(2 ln(3)))   = e^(ln(3)) −e^0  = 3−1 = 2

$$\int\:{x}.{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \:{dx}\:=\:\int{e}^{\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} } \:{d}\left(\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \right) \\ $$$$=\:{e}^{\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} } \\ $$$${then}\:\underset{\mathrm{0}} {\overset{\sqrt{\mathrm{2}\:\mathrm{ln}\left(\mathrm{3}\right)}} {\int}}{x}.{e}^{\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} } \:{dx}\:=\:\left[\:{e}^{\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} } \:\right]_{\:\mathrm{0}} ^{\sqrt{\mathrm{2}\:\mathrm{ln}\left(\mathrm{3}\right)}} \\ $$$$=\:{e}^{\mathrm{ln}\left(\mathrm{3}\right)} −\mathrm{e}^{\mathrm{0}} \:=\:\mathrm{3}−\mathrm{1}\:=\:\mathrm{2} \\ $$

Answered by niroj last updated on 22/May/20

  ∫_0 ^( (√(2In(3)))) x e^(x^2 /2) dx    Put, (x^2 /2)= t          x^2 = 2t        2xdx=2dt          xdx=dt        If x=(√(2ln(3)))  ⇒t =((2In(3))/2)=In(3)        If x=0 ⇒ t=0     ∫_0 ^( In(3))  e^t dt   = [ e^t ]_0 ^(ln(3))    =e^(ln(3)) −e^0     =3−1= 2 //.

$$\:\:\int_{\mathrm{0}} ^{\:\sqrt{\mathrm{2}{In}\left(\mathrm{3}\right)}} \mathrm{x}\:\mathrm{e}^{\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}} \mathrm{dx} \\ $$$$\:\:\mathrm{Put},\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}=\:\mathrm{t} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} =\:\mathrm{2t} \\ $$$$\:\:\:\:\:\:\mathrm{2xdx}=\mathrm{2dt} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{xdx}=\mathrm{dt} \\ $$$$\:\:\:\:\:\:\mathrm{If}\:\mathrm{x}=\sqrt{\mathrm{2ln}\left(\mathrm{3}\right)}\:\:\Rightarrow\mathrm{t}\:=\frac{\mathrm{2In}\left(\mathrm{3}\right)}{\mathrm{2}}=\mathrm{In}\left(\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\mathrm{If}\:\mathrm{x}=\mathrm{0}\:\Rightarrow\:\mathrm{t}=\mathrm{0} \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{In}\left(\mathrm{3}\right)} \:\mathrm{e}^{\mathrm{t}} \mathrm{dt} \\ $$$$\:=\:\left[\:\mathrm{e}^{\mathrm{t}} \right]_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{3}\right)} \\ $$$$\:=\mathrm{e}^{\mathrm{ln}\left(\mathrm{3}\right)} −\mathrm{e}^{\mathrm{0}} \\ $$$$\:\:=\mathrm{3}−\mathrm{1}=\:\mathrm{2}\://. \\ $$$$ \\ $$

Commented by rb222 last updated on 22/May/20

thanks sir

$${thanks}\:{sir} \\ $$

Commented by niroj last updated on 22/May/20

��

Commented by peter frank last updated on 22/May/20

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com