Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 150678 by krauss last updated on 14/Aug/21

  ∫_0 ^2 ∫_0 ^(3−x^2 ) (3−x^2 −y)dy dx

$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{3}−{x}^{\mathrm{2}} } \left(\mathrm{3}−{x}^{\mathrm{2}} −{y}\right){dy}\:{dx} \\ $$

Answered by Ar Brandon last updated on 14/Aug/21

I=∫_0 ^2 ∫_0 ^(3−x^2 ) (3−x^2 −y^2 )dydx=∫_0 ^2 [3y−x^2 y−(y^3 /3)]_0 ^(3−x^2 ) dx    =∫_0 ^2 (3(3−x^2 )−x^2 (3−x^2 )−(((3−x^2 )^3 )/3))dx  You may proceed by expanding and integrating.

$$\mathrm{I}=\int_{\mathrm{0}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{3}−{x}^{\mathrm{2}} } \left(\mathrm{3}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dydx}=\int_{\mathrm{0}} ^{\mathrm{2}} \left[\mathrm{3}{y}−{x}^{\mathrm{2}} {y}−\frac{{y}^{\mathrm{3}} }{\mathrm{3}}\right]_{\mathrm{0}} ^{\mathrm{3}−{x}^{\mathrm{2}} } {dx} \\ $$$$\:\:=\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{3}\left(\mathrm{3}−{x}^{\mathrm{2}} \right)−{x}^{\mathrm{2}} \left(\mathrm{3}−{x}^{\mathrm{2}} \right)−\frac{\left(\mathrm{3}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} }{\mathrm{3}}\right){dx} \\ $$$$\mathrm{You}\:\mathrm{may}\:\mathrm{proceed}\:\mathrm{by}\:\mathrm{expanding}\:\mathrm{and}\:\mathrm{integrating}. \\ $$

Answered by tabata last updated on 15/Aug/21

=∫_0 ^( 2) (3y−x^2 y−(y^2 /2))_0 ^(3−x^2 ) dx =∫_0 ^( 2) ((9/2)−3x^2 +(x^4 /2))dx    =((9/2)x−x^3 +(1/(10))x^5 )_0 ^2 =(9−8+((32)/(10)))=(1+((32)/(10)))=((42)/(10))=((21)/5)

$$=\int_{\mathrm{0}} ^{\:\mathrm{2}} \left(\mathrm{3}{y}−{x}^{\mathrm{2}} {y}−\frac{{y}^{\mathrm{2}} }{\mathrm{2}}\right)_{\mathrm{0}} ^{\mathrm{3}−{x}^{\mathrm{2}} } {dx}\:=\int_{\mathrm{0}} ^{\:\mathrm{2}} \left(\frac{\mathrm{9}}{\mathrm{2}}−\mathrm{3}{x}^{\mathrm{2}} +\frac{{x}^{\mathrm{4}} }{\mathrm{2}}\right){dx} \\ $$$$ \\ $$$$=\left(\frac{\mathrm{9}}{\mathrm{2}}{x}−{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{10}}{x}^{\mathrm{5}} \right)_{\mathrm{0}} ^{\mathrm{2}} =\left(\mathrm{9}−\mathrm{8}+\frac{\mathrm{32}}{\mathrm{10}}\right)=\left(\mathrm{1}+\frac{\mathrm{32}}{\mathrm{10}}\right)=\frac{\mathrm{42}}{\mathrm{10}}=\frac{\mathrm{21}}{\mathrm{5}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com