Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 108664 by mohammad17 last updated on 18/Aug/20

∫_0 ^( 2) ∫_0 ^( 2) x^2 sin(xy)dxdy

$$\int_{\mathrm{0}} ^{\:\mathrm{2}} \int_{\mathrm{0}} ^{\:\mathrm{2}} {x}^{\mathrm{2}} {sin}\left({xy}\right){dxdy} \\ $$

Answered by mathmax by abdo last updated on 18/Aug/20

I =∫_0 ^2 ( ∫_0 ^2  sin(xy)dy)x^2 dx =∫_0 ^2  ([−(1/x)cos(xy)]_(y=0) ^(y=2) )x^2 dx  =∫_0 ^2  x(1−cos(2x))dx =∫_0 ^2  xdx −∫_0 ^2  xcos(2x)dx  =[(x^2 /2)]_0 ^2  −{  [(x/2)sin(2x)]_0 ^2 −∫_0 ^2 ((sin(2x))/2)dx}  =2−{ sin(4)+(1/4)[cos(2x)]_0 ^2 }  =2−{sin4 +(1/4)(cos4−1)) =2−sin4−(1/4)cos(4)+(1/4)  =(9/4)−sin(4)−(1/4)cos(4)

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{2}} \left(\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\mathrm{sin}\left(\mathrm{xy}\right)\mathrm{dy}\right)\mathrm{x}^{\mathrm{2}} \mathrm{dx}\:=\int_{\mathrm{0}} ^{\mathrm{2}} \:\left(\left[−\frac{\mathrm{1}}{\mathrm{x}}\mathrm{cos}\left(\mathrm{xy}\right)\right]_{\mathrm{y}=\mathrm{0}} ^{\mathrm{y}=\mathrm{2}} \right)\mathrm{x}^{\mathrm{2}} \mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}} \:\mathrm{x}\left(\mathrm{1}−\mathrm{cos}\left(\mathrm{2x}\right)\right)\mathrm{dx}\:=\int_{\mathrm{0}} ^{\mathrm{2}} \:\mathrm{xdx}\:−\int_{\mathrm{0}} ^{\mathrm{2}} \:\mathrm{xcos}\left(\mathrm{2x}\right)\mathrm{dx} \\ $$$$=\left[\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{2}} \:−\left\{\:\:\left[\frac{\mathrm{x}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2x}\right)\right]_{\mathrm{0}} ^{\mathrm{2}} −\int_{\mathrm{0}} ^{\mathrm{2}} \frac{\mathrm{sin}\left(\mathrm{2x}\right)}{\mathrm{2}}\mathrm{dx}\right\} \\ $$$$=\mathrm{2}−\left\{\:\mathrm{sin}\left(\mathrm{4}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{cos}\left(\mathrm{2x}\right)\right]_{\mathrm{0}} ^{\mathrm{2}} \right\} \\ $$$$=\mathrm{2}−\left\{\mathrm{sin4}\:+\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{cos4}−\mathrm{1}\right)\right)\:=\mathrm{2}−\mathrm{sin4}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\left(\mathrm{4}\right)+\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$=\frac{\mathrm{9}}{\mathrm{4}}−\mathrm{sin}\left(\mathrm{4}\right)−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\left(\mathrm{4}\right) \\ $$

Commented by mohammad17 last updated on 18/Aug/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 18/Aug/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com