Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 789 by 123456 last updated on 14/Mar/15

∫_0 ^1 ∫_(x−x^2 ) ^(√(x−x^2 )) (√(x^2 +y^2 ))dydx=?  ∫∫_B (√(x^2 +y^2 ))dxdy     B={(x,y)∈R^2 :y≥x−x^2 ∧x^2 +y^2 −x≤0}  ∫∫_B^∗  ρ^2 dρdθ               B^∗ =???

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{{x}−{x}^{\mathrm{2}} } {\overset{\sqrt{{x}−{x}^{\mathrm{2}} }} {\int}}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{dydx}=? \\ $$$$\int\underset{\mathrm{B}} {\int}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{dxdy}\:\:\:\:\:\mathrm{B}=\left\{\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} :{y}\geqslant{x}−{x}^{\mathrm{2}} \wedge{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{x}\leqslant\mathrm{0}\right\} \\ $$$$\int\underset{\mathrm{B}^{\ast} } {\int}\rho^{\mathrm{2}} {d}\rho{d}\theta\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{B}^{\ast} =??? \\ $$

Commented by 123456 last updated on 13/Mar/15

ρ=((cos θ−sin θ)/(cos^2 θ))=(((√2)cos(θ+(π/4)))/(cos^2 θ)),0≤θ≤(π/4)  ρ=cos θ,0≤θ≤(π/2)

$$\rho=\frac{\mathrm{cos}\:\theta−\mathrm{sin}\:\theta}{\mathrm{cos}^{\mathrm{2}} \theta}=\frac{\sqrt{\mathrm{2}}\mathrm{cos}\left(\theta+\frac{\pi}{\mathrm{4}}\right)}{\mathrm{cos}^{\mathrm{2}} \theta},\mathrm{0}\leqslant\theta\leqslant\frac{\pi}{\mathrm{4}} \\ $$$$\rho=\mathrm{cos}\:\theta,\mathrm{0}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}} \\ $$

Commented by prakash jain last updated on 14/Mar/15

x=u+(1/2)⇒du=dx  x=0,u=−0.5, x=1,u=0.5  x−x^2 =(u+(1/2))−(u+(1/2))^2 =(1/2)−u^2 −(1/4)=(1/4)−u^2   Upper limit is a circle of radius 0.5.  lower limits is parabola  y=(1/4)−u^2   u=ρcos θ, y=ρsin θ  ρ^2 cos^2 θ+ρsin θ−(1/4)=0  solving quadratic ρ=((1−sin θ)/(2cos^2 θ))  Limits on θ, 0 to π  Limits on ρ, ((1−sin θ)/(2cos^2 θ)) to (1/2)  or Limits of ρ from (1/(2(1+sin θ))) to (1/2)

$${x}={u}+\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow{du}={dx} \\ $$$${x}=\mathrm{0},{u}=−\mathrm{0}.\mathrm{5},\:{x}=\mathrm{1},{u}=\mathrm{0}.\mathrm{5} \\ $$$${x}−{x}^{\mathrm{2}} =\left({u}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\left({u}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}−{u}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{4}}−{u}^{\mathrm{2}} \\ $$$$\mathrm{Upper}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{0}.\mathrm{5}. \\ $$$$\mathrm{lower}\:\mathrm{limits}\:\mathrm{is}\:\mathrm{parabola} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{4}}−{u}^{\mathrm{2}} \\ $$$${u}=\rho\mathrm{cos}\:\theta,\:{y}=\rho\mathrm{sin}\:\theta \\ $$$$\rho^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \theta+\rho\mathrm{sin}\:\theta−\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{0} \\ $$$$\mathrm{solving}\:\mathrm{quadratic}\:\rho=\frac{\mathrm{1}−\mathrm{sin}\:\theta}{\mathrm{2cos}^{\mathrm{2}} \theta} \\ $$$$\mathrm{Limits}\:\mathrm{on}\:\theta,\:\mathrm{0}\:\mathrm{to}\:\pi \\ $$$$\mathrm{Limits}\:\mathrm{on}\:\rho,\:\frac{\mathrm{1}−\mathrm{sin}\:\theta}{\mathrm{2cos}^{\mathrm{2}} \theta}\:\mathrm{to}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{or}\:\mathrm{Limits}\:\mathrm{of}\:\rho\:\mathrm{from}\:\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\theta\right)}\:\mathrm{to}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Answered by prakash jain last updated on 14/Mar/15

∫_0 ^( π)  ∫_(1/(2(1+sin θ))) ^( (1/2)) (√(((1/2)+ρcos θ)^2 +(ρsin θ)^2 )) ρdρdθ

$$\int_{\mathrm{0}} ^{\:\pi} \:\int_{\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}+\mathrm{sin}\:\theta\right)}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \sqrt{\left(\frac{\mathrm{1}}{\mathrm{2}}+\rho\mathrm{cos}\:\theta\right)^{\mathrm{2}} +\left(\rho\mathrm{sin}\:\theta\right)^{\mathrm{2}} }\:\rho{d}\rho{d}\theta \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com