Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113110 by gopikrishnan last updated on 11/Sep/20

∫_0 ^1 (√(x(x−1)dx))

$$\overset{\mathrm{1}} {\int}_{\mathrm{0}} \sqrt{{x}\left({x}−\mathrm{1}\right){dx}} \\ $$

Commented by 1549442205PVT last updated on 11/Sep/20

The function (√(x(x−1))) is defined on  set X=(−∞,0]∪[1,+∞) and isn′t  defined on (0,1),so ∫_0 ^1 (√(x(x−1)dx))  don′t exist  You should see your question again

$$\mathrm{The}\:\mathrm{function}\:\sqrt{\mathrm{x}\left(\mathrm{x}−\mathrm{1}\right)}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{on} \\ $$$$\mathrm{set}\:\mathrm{X}=\left(−\infty,\mathrm{0}\right]\cup\left[\mathrm{1},+\infty\right)\:\mathrm{and}\:\mathrm{isn}'\mathrm{t} \\ $$$$\mathrm{defined}\:\mathrm{on}\:\left(\mathrm{0},\mathrm{1}\right),\mathrm{so}\:\overset{\mathrm{1}} {\int}_{\mathrm{0}} \sqrt{{x}\left({x}−\mathrm{1}\right){dx}} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{exist} \\ $$$$\boldsymbol{\mathrm{You}}\:\boldsymbol{\mathrm{should}}\:\boldsymbol{\mathrm{see}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{question}}\:\boldsymbol{\mathrm{again}} \\ $$

Commented by gopikrishnan last updated on 11/Sep/20

ok sir

$${ok}\:{sir} \\ $$

Answered by MJS_new last updated on 11/Sep/20

I think you mean ∫(√(x(x−1))) dx  ∫(√(x(x−1)))dx=       [t=(√(x/(x−1))) → dx=−2(√(x(x−1)^3 ))dt]  =−2∫(t^2 /((t^2 −1)^3 ))dx=       [Ostrogradski′s method]  =((t(t^2 +1))/(4(t^2 −1)^2 ))+(1/4)∫(dt/(t^2 −1))=  =((t(t^2 +1))/(4(t^2 −1)^2 ))+(1/8)ln ((t−1)/(t+1)) =  =(1/4)(2x−1)(√(x(x−1)))+(1/4)ln ((√x)−(√(x−1))) +C  ⇒ ∫_0 ^1 (√(x(x−1)))dx=(π/8)i

$$\mathrm{I}\:\mathrm{think}\:\mathrm{you}\:\mathrm{mean}\:\int\sqrt{{x}\left({x}−\mathrm{1}\right)}\:{dx} \\ $$$$\int\sqrt{{x}\left({x}−\mathrm{1}\right)}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{\frac{{x}}{{x}−\mathrm{1}}}\:\rightarrow\:{dx}=−\mathrm{2}\sqrt{{x}\left({x}−\mathrm{1}\right)^{\mathrm{3}} }{dt}\right] \\ $$$$=−\mathrm{2}\int\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} }{dx}= \\ $$$$\:\:\:\:\:\left[\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{method}\right] \\ $$$$=\frac{{t}\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{4}\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{1}}= \\ $$$$=\frac{{t}\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{4}\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{ln}\:\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\:= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2}{x}−\mathrm{1}\right)\sqrt{{x}\left({x}−\mathrm{1}\right)}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\left(\sqrt{{x}}−\sqrt{{x}−\mathrm{1}}\right)\:+{C} \\ $$$$\Rightarrow\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{{x}\left({x}−\mathrm{1}\right)}{dx}=\frac{\pi}{\mathrm{8}}\mathrm{i} \\ $$

Commented by gopikrishnan last updated on 11/Sep/20

Thank u sir

$${Thank}\:{u}\:{sir} \\ $$

Answered by abdomsup last updated on 11/Sep/20

i think  is ∫_0 ^1 (√(x(1−x)))dx  we do the changement (√x)=t ⇒  I =∫_0 ^1 t(√(1−t^2 ))(2t)dt  =2∫_0 ^1  t^2 (√(1−t^2 ))dt  =_(t=sinθ)     2∫_0 ^(π/2)  sin^2 θ cosθ cosθ dθ  =2∫_0 ^(π/2) ((1/2)sin(2θ))^2  dθ  =(1/2)∫_0 ^(π/2)  ((1−cos(4θ))/2) dθ  =(π/8) −(1/4)[(1/4)sin(4θ)]_0 ^(π/2)  =(π/8)−0  ⇒I=(π/8)

$${i}\:{think}\:\:{is}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}\left(\mathrm{1}−{x}\right)}{dx} \\ $$$${we}\:{do}\:{the}\:{changement}\:\sqrt{{x}}={t}\:\Rightarrow \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {t}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\left(\mathrm{2}{t}\right){dt} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}} \sqrt{\mathrm{1}−{t}^{\mathrm{2}} }{dt} \\ $$$$=_{{t}={sin}\theta} \:\:\:\:\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{2}} \theta\:{cos}\theta\:{cos}\theta\:{d}\theta \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}\theta\right)\right)^{\mathrm{2}} \:{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}−{cos}\left(\mathrm{4}\theta\right)}{\mathrm{2}}\:{d}\theta \\ $$$$=\frac{\pi}{\mathrm{8}}\:−\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{4}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\pi}{\mathrm{8}}−\mathrm{0} \\ $$$$\Rightarrow{I}=\frac{\pi}{\mathrm{8}} \\ $$

Commented by gopikrishnan last updated on 11/Sep/20

Thank u sir

$${Thank}\:{u}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com