Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 171744 by mnjuly1970 last updated on 20/Jun/22

        Ω = ∫_0 ^( 1) (((√x) ln(x))/(x^( 2) −x +1)) dx = ????

$$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\sqrt{{x}}\:{ln}\left({x}\right)}{{x}^{\:\mathrm{2}} −{x}\:+\mathrm{1}}\:{dx}\:=\:???? \\ $$

Answered by Mathspace last updated on 21/Jun/22

I=∫_0 ^1  (((√x)lnx)/(1−(x−x^2 )))  =∫_0 ^1 (√x)lnxΣ_(n=0) ^∞ (x−x^2 )^n dx  =Σ_(n=0) ^∞ ∫_0 ^1 x^(n+(1/2)) (1−x)^n  lnx dx  f(a)=∫_0 ^1  x^a (1−x)^n dx  =∫_0 ^1 x^(a+1−1) (1−x)^(n+1−1) dx  =B(a+1,n+1)  =((Γ(a+1)Γ(n+1))/(Γ(n+a+2)))  ⇒f^′ (a)=∫_0 ^1 x^a (1−x)^n lnxdx ⇒  f^′ (n+(1/2))=∫_0 ^1 x^(n+(1/2)) (1−x)^n lnxdx  f^′ (a)=Γ(n+1)×(d/da)(((Γ(a+1))/(Γ(n+a+2))))  =Γ(n+1).((Γ^′ (a+1)Γ(n+a+(1/2))−Γ(a+1)Γ^′ (n+a+(1/2)))/(Γ^2 (n+a+(1/2))))  ⇒f^′ (n+(1/2))  =Γ(n+1).((Γ(2n+1).Γ^′ (n+(3/2))−Γ(n+(3/2))Γ^′ (2n+1))/(Γ^2 (2n+1)))=u_n   we know Ψ(x)=((Γ^′ (x))/(Γ(x))) ⇒  Γ^′ (x)=Ψ(x).Γ(x)  ⇒I=Σ_(n=0) ^∞ u_n ....

$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\sqrt{{x}}{lnx}}{\mathrm{1}−\left({x}−{x}^{\mathrm{2}} \right)} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}}{lnx}\sum_{{n}=\mathrm{0}} ^{\infty} \left({x}−{x}^{\mathrm{2}} \right)^{{n}} {dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}+\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−{x}\right)^{{n}} \:{lnx}\:{dx} \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{a}} \left(\mathrm{1}−{x}\right)^{{n}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}+\mathrm{1}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{n}+\mathrm{1}−\mathrm{1}} {dx} \\ $$$$={B}\left({a}+\mathrm{1},{n}+\mathrm{1}\right) \\ $$$$=\frac{\Gamma\left({a}+\mathrm{1}\right)\Gamma\left({n}+\mathrm{1}\right)}{\Gamma\left({n}+{a}+\mathrm{2}\right)} \\ $$$$\Rightarrow{f}^{'} \left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}} \left(\mathrm{1}−{x}\right)^{{n}} {lnxdx}\:\Rightarrow \\ $$$${f}^{'} \left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}+\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−{x}\right)^{{n}} {lnxdx} \\ $$$${f}^{'} \left({a}\right)=\Gamma\left({n}+\mathrm{1}\right)×\frac{{d}}{{da}}\left(\frac{\Gamma\left({a}+\mathrm{1}\right)}{\Gamma\left({n}+{a}+\mathrm{2}\right)}\right) \\ $$$$=\Gamma\left({n}+\mathrm{1}\right).\frac{\Gamma^{'} \left({a}+\mathrm{1}\right)\Gamma\left({n}+{a}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\Gamma\left({a}+\mathrm{1}\right)\Gamma^{'} \left({n}+{a}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma^{\mathrm{2}} \left({n}+{a}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$\Rightarrow{f}^{'} \left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\Gamma\left({n}+\mathrm{1}\right).\frac{\Gamma\left(\mathrm{2}{n}+\mathrm{1}\right).\Gamma^{'} \left({n}+\frac{\mathrm{3}}{\mathrm{2}}\right)−\Gamma\left({n}+\frac{\mathrm{3}}{\mathrm{2}}\right)\Gamma^{'} \left(\mathrm{2}{n}+\mathrm{1}\right)}{\Gamma^{\mathrm{2}} \left(\mathrm{2}{n}+\mathrm{1}\right)}={u}_{{n}} \\ $$$${we}\:{know}\:\Psi\left({x}\right)=\frac{\Gamma^{'} \left({x}\right)}{\Gamma\left({x}\right)}\:\Rightarrow \\ $$$$\Gamma^{'} \left({x}\right)=\Psi\left({x}\right).\Gamma\left({x}\right) \\ $$$$\Rightarrow{I}=\sum_{{n}=\mathrm{0}} ^{\infty} {u}_{{n}} .... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com