Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 127543 by Ar Brandon last updated on 30/Dec/20

∫_0 ^1 (x^(2021) /(e^x −1))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{2021}} }{\mathrm{e}^{\mathrm{x}} −\mathrm{1}}\mathrm{dx} \\ $$

Answered by Dwaipayan Shikari last updated on 30/Dec/20

Σ_(n=1) ^∞ ∫_0 ^1 e^(−nx) x^(2021) dx   Hah!     if   it was Σ_(n=1) ^∞ ∫_0 ^∞ e^(−nx) x^(2021)  then it is  =  2021!ζ(2022)  Trying to find that..

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{nx}} {x}^{\mathrm{2021}} {dx}\: \\ $$$${Hah}!\:\:\:\:\:{if}\:\:\:{it}\:{was}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\infty} {e}^{−{nx}} {x}^{\mathrm{2021}} \:{then}\:{it}\:{is}\:\:=\:\:\mathrm{2021}!\zeta\left(\mathrm{2022}\right) \\ $$$${Trying}\:{to}\:{find}\:{that}.. \\ $$

Commented by Ar Brandon last updated on 30/Dec/20

  😃

$$ \\ $$😃

Answered by mindispower last updated on 31/Dec/20

=∫_0 ^1 (x/(e^x −1))=∫_0 ^∞ (x/(e^x −1))dx−∫_1 ^∞ ((xe^(−x) )/(1−e^(−x) ))dx  ⇒=Γ(2)ζ(2)+[ln(1−e^(−x) )]_1 ^∞ +∫_1 ^∞ ln(1−e^(−x) )dx  =ζ(2)ζ(2)+ln(1−e^(−1) )+∫_e^−  ^0 ((ln(1−t))/t)dt  =ζ(2)Γ(2)+ln(1−e^(−1) )−Li_2 ((1/e))  iwillfinish later ∫_0 ^1 (x^n /(e^x +1))dx  =ζ(n+1)Γ(n+1)+Σ_(k=1) ^(n+1) a_k Li_k (b_k )   Li_1 (x)=ln(1−t)...  i think not sur that in this forme

$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{{e}^{{x}} −\mathrm{1}}=\int_{\mathrm{0}} ^{\infty} \frac{{x}}{{e}^{{x}} −\mathrm{1}}{dx}−\int_{\mathrm{1}} ^{\infty} \frac{{xe}^{−{x}} }{\mathrm{1}−{e}^{−{x}} }{dx} \\ $$$$\Rightarrow=\Gamma\left(\mathrm{2}\right)\zeta\left(\mathrm{2}\right)+\left[{ln}\left(\mathrm{1}−{e}^{−{x}} \right)\right]_{\mathrm{1}} ^{\infty} +\int_{\mathrm{1}} ^{\infty} {ln}\left(\mathrm{1}−{e}^{−{x}} \right){dx} \\ $$$$=\zeta\left(\mathrm{2}\right)\zeta\left(\mathrm{2}\right)+{ln}\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)+\int_{{e}^{−} } ^{\mathrm{0}} \frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt} \\ $$$$=\zeta\left(\mathrm{2}\right)\Gamma\left(\mathrm{2}\right)+{ln}\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)−{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{{e}}\right) \\ $$$${iwillfinish}\:{later}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}} }{{e}^{{x}} +\mathrm{1}}{dx} \\ $$$$=\zeta\left({n}+\mathrm{1}\right)\Gamma\left({n}+\mathrm{1}\right)+\underset{{k}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\sum}}{a}_{{k}} {Li}_{{k}} \left({b}_{{k}} \right)\: \\ $$$${Li}_{\mathrm{1}} \left({x}\right)={ln}\left(\mathrm{1}−{t}\right)... \\ $$$${i}\:{think}\:{not}\:{sur}\:{that}\:{in}\:{this}\:{forme} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com