Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113159 by Dwaipayan Shikari last updated on 11/Sep/20

∫_0 ^1 x^2 log(1−x)dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {log}\left(\mathrm{1}−{x}\right){dx} \\ $$

Answered by MJS_new last updated on 11/Sep/20

∫x^2 ln (1−x) dx=       [by parts]  =(x^3 /3)ln (1−x) −(1/3)∫(x^3 /(x−1))dx=  =(x^3 /3)ln (1−x) −(1/3)∫x^2 +x+1+(1/(x−1))dx=  =(x^3 /3)ln (1−x) −(1/3)ln (x−1) −(x^3 /9)−(x^2 /6)−(x/3)+C  now we have to calculate the limit of this  with x→1^−   I get ∫_0 ^1 x^2 ln (1−x) dx=−((11)/(18))

$$\int{x}^{\mathrm{2}} \mathrm{ln}\:\left(\mathrm{1}−{x}\right)\:{dx}= \\ $$$$\:\:\:\:\:\left[\mathrm{by}\:\mathrm{parts}\right] \\ $$$$=\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\mathrm{ln}\:\left(\mathrm{1}−{x}\right)\:−\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{x}^{\mathrm{3}} }{{x}−\mathrm{1}}{dx}= \\ $$$$=\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\mathrm{ln}\:\left(\mathrm{1}−{x}\right)\:−\frac{\mathrm{1}}{\mathrm{3}}\int{x}^{\mathrm{2}} +{x}+\mathrm{1}+\frac{\mathrm{1}}{{x}−\mathrm{1}}{dx}= \\ $$$$=\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\mathrm{ln}\:\left(\mathrm{1}−{x}\right)\:−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\left({x}−\mathrm{1}\right)\:−\frac{{x}^{\mathrm{3}} }{\mathrm{9}}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}−\frac{{x}}{\mathrm{3}}+{C} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{of}\:\mathrm{this} \\ $$$$\mathrm{with}\:{x}\rightarrow\mathrm{1}^{−} \\ $$$$\mathrm{I}\:\mathrm{get}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{x}^{\mathrm{2}} \mathrm{ln}\:\left(\mathrm{1}−{x}\right)\:{dx}=−\frac{\mathrm{11}}{\mathrm{18}} \\ $$

Commented by Dwaipayan Shikari last updated on 11/Sep/20

I haven′t thought of this. Thanking you

$${I}\:{haven}'{t}\:{thought}\:{of}\:{this}.\:{Thanking}\:{you} \\ $$

Answered by abdomsup last updated on 11/Sep/20

let A =∫_0 ^1  x^2 ln(1−x)dx we have  (d/dx)ln(1−x) =−(1/(1−x)) =−Σ_(n=0) ^∞ x^n   ⇒ln(1−x)=−Σ_(n=0) ^∞  (x^(n+1) /(n+1))  =−Σ_(n=1) ^∞  (x^n /n) ⇒  A =−∫_0 ^1 x^2 (Σ_(n=1) ^∞  (x^n /n))dx  =−Σ_(n=1) ^∞  (1/n)∫_0 ^(1 )  x^(n+2)  dx  =−Σ_(n=1) ^∞  (1/(n(n+3)))    =−(1/3)Σ_(n=1) ^∞ ((1/n)−(1/(n+3)))  =−(1/3) Σ_(n=1) ^∞  (1/n) +(1/3)Σ_(n=1) ^∞  (1/(n+3))  but  Σ_(n=1) ^∞  (1/(n+3)) =Σ_(n=4) ^∞  (1/n) ⇒  A =−(1/3){1+(1/2)+(1/3) +Σ_(n=4) ^∞  (1/n)}  +(1/3)Σ_(n=4) ^∞  (1/4) =−(1/3){(3/2)+(1/3)}  =−(1/2)−(1/9) =((−11)/(18))

$${let}\:{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}} {ln}\left(\mathrm{1}−{x}\right){dx}\:{we}\:{have} \\ $$$$\frac{{d}}{{dx}}{ln}\left(\mathrm{1}−{x}\right)\:=−\frac{\mathrm{1}}{\mathrm{1}−{x}}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} {x}^{{n}} \\ $$$$\Rightarrow{ln}\left(\mathrm{1}−{x}\right)=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:\Rightarrow \\ $$$${A}\:=−\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\right){dx} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}\:} \:{x}^{{n}+\mathrm{2}} \:{dx} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{3}\right)} \\ $$$$ \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\sum_{{n}=\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{3}}\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\:+\frac{\mathrm{1}}{\mathrm{3}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}+\mathrm{3}} \\ $$$${but}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}+\mathrm{3}}\:=\sum_{{n}=\mathrm{4}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\:\Rightarrow \\ $$$${A}\:=−\frac{\mathrm{1}}{\mathrm{3}}\left\{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\:+\sum_{{n}=\mathrm{4}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\right\} \\ $$$$+\frac{\mathrm{1}}{\mathrm{3}}\sum_{{n}=\mathrm{4}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{4}}\:=−\frac{\mathrm{1}}{\mathrm{3}}\left\{\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right\} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{9}}\:=\frac{−\mathrm{11}}{\mathrm{18}} \\ $$

Commented by Dwaipayan Shikari last updated on 11/Sep/20

Great sir!

$${Great}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com