Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26631 by jkssm1857@gmail.com last updated on 27/Dec/17

∫_0 ^∞ (1/x^2 )dx

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$$$ \\ $$

Commented by abdo imad last updated on 27/Dec/17

its a divergent integral let put Iε= ∫_ε ^∝ (dx/x^2 )  I(ε)= [−(1/x) ]_(x=ε) ^∝ =  (1/ε)      and  lim_(ε_(ε>0) −>0) I(ε)=+∝

$${its}\:{a}\:{divergent}\:{integral}\:{let}\:{put}\:{I}\varepsilon=\:\int_{\varepsilon} ^{\propto} \frac{{dx}}{{x}^{\mathrm{2}} } \\ $$$${I}\left(\varepsilon\right)=\:\left[−\frac{\mathrm{1}}{{x}}\:\right]_{{x}=\varepsilon} ^{\propto} =\:\:\frac{\mathrm{1}}{\varepsilon}\:\:\:\:\:\:{and}\:\:{lim}_{\varepsilon_{\varepsilon>\mathrm{0}} −>\mathrm{0}} {I}\left(\varepsilon\right)=+\propto \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com