Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 125708 by Dwaipayan Shikari last updated on 13/Dec/20

∫_0 ^∞ ((1−tanhx)/( ((tanhx))^(1/5) ))dx

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{tanhx}}{\:\sqrt[{\mathrm{5}}]{{tanhx}}}{dx} \\ $$

Answered by mindispower last updated on 13/Dec/20

e^x =t  =∫_1 ^∞ ((1−((t−(1/t))/(t+(1/t))))/( (((t^2 −1)/(t^2 +1)))^(1/5) )).(1/t)dt  =∫_1 ^∞ ((2/(t^2 +1))/( (((t^2 −1)/(t^2 +1)))^(1/5) )).(dt/t)=2∫_1 ^∞ (dt/(t(t^2 +1)^(4/5) (t^2 −1)^(1/5) ))  =∫_1 ^∞ ((d(t^2 ))/(t^2 (t^2 +1)^(4/5) (t^2 −1)^(1/5) ))   =∫_1 ^∞ (dt/(t(t+1)^(4/5) (t−1)^(1/5) ))  =∫_0 ^1 ((−d((1/t)))/((1/t)(1+t)^(4/5) (1−t)^(1/5) .(1/t)))=∫_0 ^1 (1+t)^(−(4/5)) (1−t)^(−(1/5)) dt  =∫_0 ^1 t^(1−1) (1−t)^((9/5)−1−1) (1−(−1)t)^(−(4/5)) dt  =β(1,(4/5))     _2 F_1 ((4/5),1;(9/5);−1)  ∫_0 ^∞ ((1−th(x))/( ((th(x)))^(1/5) ))dx=β(1,(4/5))._2 F_1 ((4/5),1;(9/5);1)⋍0.90323

$${e}^{{x}} ={t} \\ $$$$=\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}−\frac{{t}−\frac{\mathrm{1}}{{t}}}{{t}+\frac{\mathrm{1}}{{t}}}}{\:\sqrt[{\mathrm{5}}]{\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}}}.\frac{\mathrm{1}}{{t}}{dt} \\ $$$$=\int_{\mathrm{1}} ^{\infty} \frac{\frac{\mathrm{2}}{{t}^{\mathrm{2}} +\mathrm{1}}}{\:\sqrt[{\mathrm{5}}]{\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}}}.\frac{{dt}}{{t}}=\mathrm{2}\int_{\mathrm{1}} ^{\infty} \frac{{dt}}{{t}\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{5}}} \left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{5}}} } \\ $$$$=\int_{\mathrm{1}} ^{\infty} \frac{{d}\left({t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} \left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{5}}} \left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{5}}} }\: \\ $$$$=\int_{\mathrm{1}} ^{\infty} \frac{{dt}}{{t}\left({t}+\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{5}}} \left({t}−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{5}}} } \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{−{d}\left(\frac{\mathrm{1}}{{t}}\right)}{\frac{\mathrm{1}}{{t}}\left(\mathrm{1}+{t}\right)^{\frac{\mathrm{4}}{\mathrm{5}}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{5}}} .\frac{\mathrm{1}}{{t}}}=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{t}\right)^{−\frac{\mathrm{4}}{\mathrm{5}}} \left(\mathrm{1}−{t}\right)^{−\frac{\mathrm{1}}{\mathrm{5}}} {dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{1}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{9}}{\mathrm{5}}−\mathrm{1}−\mathrm{1}} \left(\mathrm{1}−\left(−\mathrm{1}\right){t}\right)^{−\frac{\mathrm{4}}{\mathrm{5}}} {dt} \\ $$$$=\beta\left(\mathrm{1},\frac{\mathrm{4}}{\mathrm{5}}\right)\:\:\:\:\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{5}},\mathrm{1};\frac{\mathrm{9}}{\mathrm{5}};−\mathrm{1}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{th}\left({x}\right)}{\:\sqrt[{\mathrm{5}}]{{th}\left({x}\right)}}{dx}=\beta\left(\mathrm{1},\frac{\mathrm{4}}{\mathrm{5}}\right)._{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{4}}{\mathrm{5}},\mathrm{1};\frac{\mathrm{9}}{\mathrm{5}};\mathrm{1}\right)\backsimeq\mathrm{0}.\mathrm{90323} \\ $$

Commented by Dwaipayan Shikari last updated on 13/Dec/20

Great sir! great approach .  My thinking  ∫_0 ^∞ ((1−tanhx)/( ((tanhx))^(1/5) ))dx= ∫_0 ^∞ ((1−tanh^2 x)/((1+tanhx)((tanhx))^(1/5) ))dx    tanhx=t  =∫_0 ^1 (dt/((1+t)(t)^(1/5) ))=5∫_0 ^1 (u^3 /(1+u^5 ))dt ....      t=u^5    We can decompose it

$${Great}\:{sir}!\:{great}\:{approach}\:. \\ $$$${My}\:{thinking} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{tanhx}}{\:\sqrt[{\mathrm{5}}]{{tanhx}}}{dx}=\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−{tanh}^{\mathrm{2}} {x}}{\left(\mathrm{1}+{tanhx}\right)\sqrt[{\mathrm{5}}]{{tanhx}}}{dx}\:\:\:\:{tanhx}={t} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\left(\mathrm{1}+{t}\right)\sqrt[{\mathrm{5}}]{{t}}}=\mathrm{5}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{\mathrm{3}} }{\mathrm{1}+{u}^{\mathrm{5}} }{dt}\:....\:\:\:\:\:\:{t}={u}^{\mathrm{5}} \: \\ $$$${We}\:{can}\:{decompose}\:{it}\: \\ $$

Commented by mindispower last updated on 13/Dec/20

yes nice  nice

$${yes}\:{nice} \\ $$$${nice} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com