Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137141 by Ar Brandon last updated on 30/Mar/21

∫_0 ^1 ((t^4 (1−t)^4 )/(1+t^2 ))dt

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{t}^{\mathrm{4}} \left(\mathrm{1}−\mathrm{t}\right)^{\mathrm{4}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$

Answered by Ar Brandon last updated on 30/Mar/21

J=∫_0 ^1 ((t^4 (1−t)^4 )/(1+t^2 ))dt=∫_0 ^1 ((t^4 (1−4t+6t^2 −4t^3 +t^4 ))/(1+t^2 ))dt     =∫_0 ^1 ((t^4 (1−4t+6t^2 −4t^3 +t^4 )(1−t^2 ))/(1−t^4 ))dt    =^(u=t^4 ) (1/4)∫_0 ^1 ((u^(1/4) (1−4u^(1/4) +6u^(1/2) −4u^(3/4) +u)(1−u^(1/2) ))/(1−u))du     =(1/4){[ψ((7/4))−ψ((5/4))]−4[ψ(2)−ψ((3/2))]+6[ψ((9/4))−ψ((7/4))]              {−4[ψ((5/2))−ψ(2)]+[ψ(((11)/4))−ψ((9/4))]}      =(1/4){[(4/3)+ψ((3/4))−4−ψ((1/4))]−4[1+ψ(1)−2−ψ((1/2))]        {+6[(4/5)+4+ψ((1/4))−(4/3)−ψ((3/4))]        {−4[(2/3)+2+ψ((1/2))−1−ψ(1)]+[(4/7)+(4/3)+ψ((3/4))−(4/5)−4−ψ((1/4))]}      =(1/4){[−(8/3)+π]−4[−1+2ln2]+6[((52)/(15))−π]−4[(5/3)−2ln2]+[−((304)/(105))+π]}      =(1/4){((88)/7)−4π}=((22)/7)−𝛑

$$\mathrm{J}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{t}^{\mathrm{4}} \left(\mathrm{1}−\mathrm{t}\right)^{\mathrm{4}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{t}^{\mathrm{4}} \left(\mathrm{1}−\mathrm{4t}+\mathrm{6t}^{\mathrm{2}} −\mathrm{4t}^{\mathrm{3}} +\mathrm{t}^{\mathrm{4}} \right)}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{t}^{\mathrm{4}} \left(\mathrm{1}−\mathrm{4t}+\mathrm{6t}^{\mathrm{2}} −\mathrm{4t}^{\mathrm{3}} +\mathrm{t}^{\mathrm{4}} \right)\left(\mathrm{1}−\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{1}−\mathrm{t}^{\mathrm{4}} }\mathrm{dt} \\ $$$$\:\:\overset{\mathrm{u}=\mathrm{t}^{\mathrm{4}} } {=}\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{u}^{\frac{\mathrm{1}}{\mathrm{4}}} \left(\mathrm{1}−\mathrm{4u}^{\frac{\mathrm{1}}{\mathrm{4}}} +\mathrm{6u}^{\frac{\mathrm{1}}{\mathrm{2}}} −\mathrm{4u}^{\frac{\mathrm{3}}{\mathrm{4}}} +\mathrm{u}\right)\left(\mathrm{1}−\mathrm{u}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)}{\mathrm{1}−\mathrm{u}}\mathrm{du} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\left\{\left[\psi\left(\frac{\mathrm{7}}{\mathrm{4}}\right)−\psi\left(\frac{\mathrm{5}}{\mathrm{4}}\right)\right]−\mathrm{4}\left[\psi\left(\mathrm{2}\right)−\psi\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\right]+\mathrm{6}\left[\psi\left(\frac{\mathrm{9}}{\mathrm{4}}\right)−\psi\left(\frac{\mathrm{7}}{\mathrm{4}}\right)\right]\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\left\{−\mathrm{4}\left[\psi\left(\frac{\mathrm{5}}{\mathrm{2}}\right)−\psi\left(\mathrm{2}\right)\right]+\left[\psi\left(\frac{\mathrm{11}}{\mathrm{4}}\right)−\psi\left(\frac{\mathrm{9}}{\mathrm{4}}\right)\right]\right\} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\left\{\left[\frac{\mathrm{4}}{\mathrm{3}}+\psi\left(\frac{\mathrm{3}}{\mathrm{4}}\right)−\mathrm{4}−\psi\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\right]−\mathrm{4}\left[\mathrm{1}+\psi\left(\mathrm{1}\right)−\mathrm{2}−\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right]\right. \\ $$$$\:\:\:\:\:\:\left\{+\mathrm{6}\left[\frac{\mathrm{4}}{\mathrm{5}}+\mathrm{4}+\psi\left(\frac{\mathrm{1}}{\mathrm{4}}\right)−\frac{\mathrm{4}}{\mathrm{3}}−\psi\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\right]\right. \\ $$$$\:\:\:\:\:\:\left\{−\mathrm{4}\left[\frac{\mathrm{2}}{\mathrm{3}}+\mathrm{2}+\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}−\psi\left(\mathrm{1}\right)\right]+\left[\frac{\mathrm{4}}{\mathrm{7}}+\frac{\mathrm{4}}{\mathrm{3}}+\psi\left(\frac{\mathrm{3}}{\mathrm{4}}\right)−\frac{\mathrm{4}}{\mathrm{5}}−\mathrm{4}−\psi\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\right]\right\} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\left\{\left[−\frac{\mathrm{8}}{\mathrm{3}}+\pi\right]−\mathrm{4}\left[−\mathrm{1}+\mathrm{2ln2}\right]+\mathrm{6}\left[\frac{\mathrm{52}}{\mathrm{15}}−\pi\right]−\mathrm{4}\left[\frac{\mathrm{5}}{\mathrm{3}}−\mathrm{2ln2}\right]+\left[−\frac{\mathrm{304}}{\mathrm{105}}+\pi\right]\right\} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\left\{\frac{\mathrm{88}}{\mathrm{7}}−\mathrm{4}\pi\right\}=\frac{\mathrm{22}}{\mathrm{7}}−\boldsymbol{\pi} \\ $$

Commented by Ar Brandon last updated on 30/Mar/21

Any suggestions ?

$$\mathrm{Any}\:\mathrm{suggestions}\:? \\ $$

Commented by mnjuly1970 last updated on 30/Mar/21

nice  very nice  thank you..:   result:: π<((22)/7) ...

$${nice}\:\:{very}\:{nice}\:\:{thank}\:{you}..: \\ $$$$\:{result}::\:\pi<\frac{\mathrm{22}}{\mathrm{7}}\:... \\ $$

Commented by Ar Brandon last updated on 30/Mar/21

Thanks for your approuval, Sir

Answered by Dwaipayan Shikari last updated on 30/Mar/21

Commented by Ar Brandon last updated on 30/Mar/21

Nice decomposition ! Thanks

$$\mathrm{Nice}\:\mathrm{decomposition}\:!\:\mathrm{Thanks} \\ $$

Commented by Dwaipayan Shikari last updated on 30/Mar/21

  😃

$$ \\ $$😃

Commented by mnjuly1970 last updated on 30/Mar/21

very nice solution....

$${very}\:{nice}\:{solution}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com