Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 205163 by Lindemann last updated on 11/Mar/24

∫_0 ^1 ((sin(lnx))/(lnx))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{sin}\left({lnx}\right)}{{lnx}}{dx} \\ $$

Answered by mathzup last updated on 11/Mar/24

I=∫_0 ^1 ((sin(lnx))/(lnx))dx changement x=e^(−t)   give I=−∫_0 ^∞  ((−sint)/(−t))(−e^(−t) )dt  =∫_0 ^∞  (e^(−t) /t)sint dt  let f(a)=∫_0 ^∞  (e^(−at) /t)sint dt      (a>0)  f^′ (a)=−∫_0 ^∞ e^(−at) sint dt  =−Im(∫_0 ^∞  e^(−at+it) dt)  but ∫_0 ^∞  e^((−a+i)t) dt=[(1/(−a+i))e^((−a+i)t) ]_0 ^∞   =−(1/(−a+i))=(1/(a−i))=((a+i)/(a^2 +1)) ⇒  f^′ (a)=−(1/(a^2 +1)) ⇒f(a)=c−arctana  la fonction est prolongeable par continuite en0  ⇒∃m>0 ∣e^(−at)  ((sint)/t)∣≤me^(−at)  ⇒  ∣f(a)∣≤m∫_0 ^∞ e^(−at) dt =(m/a) →0  (a→+∞)  0=c−(π/2) ⇒c=(π/2) ⇒f(a)=(π/2)−arctan(a)  ∫_0 ^∞  (e^(−t) /t)sint dt =f(1)=(π/2)−arctan(1)  =(π/2)−(π/4)=(π/4)  so ∫_0 ^1  ((sin(lnx))/(lnx))dx=(π/4)

$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{sin}\left({lnx}\right)}{{lnx}}{dx}\:{changement}\:{x}={e}^{−{t}} \\ $$$${give}\:{I}=−\int_{\mathrm{0}} ^{\infty} \:\frac{−{sint}}{−{t}}\left(−{e}^{−{t}} \right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{t}} }{{t}}{sint}\:{dt} \\ $$$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{at}} }{{t}}{sint}\:{dt}\:\:\:\:\:\:\left({a}>\mathrm{0}\right) \\ $$$${f}^{'} \left({a}\right)=−\int_{\mathrm{0}} ^{\infty} {e}^{−{at}} {sint}\:{dt} \\ $$$$=−{Im}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−{at}+{it}} {dt}\right) \\ $$$${but}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{\left(−{a}+{i}\right){t}} {dt}=\left[\frac{\mathrm{1}}{−{a}+{i}}{e}^{\left(−{a}+{i}\right){t}} \right]_{\mathrm{0}} ^{\infty} \\ $$$$=−\frac{\mathrm{1}}{−{a}+{i}}=\frac{\mathrm{1}}{{a}−{i}}=\frac{{a}+{i}}{{a}^{\mathrm{2}} +\mathrm{1}}\:\Rightarrow \\ $$$${f}^{'} \left({a}\right)=−\frac{\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{1}}\:\Rightarrow{f}\left({a}\right)={c}−{arctana} \\ $$$${la}\:{fonction}\:{est}\:{prolongeable}\:{par}\:{continuite}\:{en}\mathrm{0} \\ $$$$\Rightarrow\exists{m}>\mathrm{0}\:\mid{e}^{−{at}} \:\frac{{sint}}{{t}}\mid\leqslant{me}^{−{at}} \:\Rightarrow \\ $$$$\mid{f}\left({a}\right)\mid\leqslant{m}\int_{\mathrm{0}} ^{\infty} {e}^{−{at}} {dt}\:=\frac{{m}}{{a}}\:\rightarrow\mathrm{0}\:\:\left({a}\rightarrow+\infty\right) \\ $$$$\mathrm{0}={c}−\frac{\pi}{\mathrm{2}}\:\Rightarrow{c}=\frac{\pi}{\mathrm{2}}\:\Rightarrow{f}\left({a}\right)=\frac{\pi}{\mathrm{2}}−{arctan}\left({a}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{t}} }{{t}}{sint}\:{dt}\:={f}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{2}}−{arctan}\left(\mathrm{1}\right) \\ $$$$=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}=\frac{\pi}{\mathrm{4}} \\ $$$${so}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sin}\left({lnx}\right)}{{lnx}}{dx}=\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com