Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 217289 by Frix last updated on 08/Mar/25

∫_0 ^1 sin^(−1)  (1/( (√(1+x−x^2 )))) dx=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}−{x}^{\mathrm{2}} }}\:{dx}=? \\ $$

Commented by Ghisom last updated on 11/Mar/25

we can use partial integration       u′=1∧v=sin^(−1)  (1/( (√(−x^2 +x+1))))  but then the result is not nice...  the solution is (π/ϕ^2 )=((3−(√5))/2)π but I found no  way to clearly get it yet

$$\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:\mathrm{partial}\:\mathrm{integration} \\ $$$$\:\:\:\:\:{u}'=\mathrm{1}\wedge{v}=\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{1}}{\:\sqrt{−{x}^{\mathrm{2}} +{x}+\mathrm{1}}} \\ $$$$\mathrm{but}\:\mathrm{then}\:\mathrm{the}\:\mathrm{result}\:\mathrm{is}\:\mathrm{not}\:\mathrm{nice}... \\ $$$$\mathrm{the}\:\mathrm{solution}\:\mathrm{is}\:\frac{\pi}{\varphi^{\mathrm{2}} }=\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}}\pi\:\mathrm{but}\:\mathrm{I}\:\mathrm{found}\:\mathrm{no} \\ $$$$\mathrm{way}\:\mathrm{to}\:\mathrm{clearly}\:\mathrm{get}\:\mathrm{it}\:\mathrm{yet} \\ $$

Answered by Ghisom last updated on 12/Mar/25

I finally found a good path using  Feynman′s trick:  ∫_0 ^1 arcsin (1/( (√(−x^2 +x+1)))) dx=  =2∫_0 ^(1/2) arctan (1/( (√x)(√(1−x)))) dx    Ω(α)=2∫_0 ^(1/2) arctan (α/( (√x)(√(1−x)))) dx  Ω′(α)=2∫_0 ^(1/2) (((√x)(√(1−x)))/(x(1−x)+α^2 ))dx=       [t=arcsin (√x) → dx=2(√x)(√(1−x))dt]  =4∫_0 ^(π/4) ((cos^2  t sin^2  t)/(α^2 +cos^2  t sin^2  t))dt=  =4∫_0 ^(π/4) dt−4α^2 ∫_0 ^(π/4) (dt/(α^2 +cos^2  t sin^2  t))=       [u=tan 2t → dt=(du/(2(u^2 +1)))]  =π−((8α^2 )/(4α^2 +1))∫_0 ^∞ (du/(u^2 +((4α^2 )/(4α^2 +1))))=  =π−((4α)/( (√(4α^2 +1))))[arctan (((√(4α^2 +1))u)/(2α))]_0 ^∞ =  =π(1−((2α)/( (√(4α^2 +1)))))=Ω′(α)  Ω(α)=π(∫dα−∫((2α)/( (√(4α^2 +1))))dα)=  =π(α−((√(4α^2 +1))/2)+C)  Ω(0)=0 ⇒ C=(1/2)  Ω(α)=π(α−((√(4α^2 +1))/2)+(1/2))  Ω(1)=((3−(√5))/2)π=(π/ϕ^2 )

$$\mathrm{I}\:\mathrm{finally}\:\mathrm{found}\:\mathrm{a}\:\mathrm{good}\:\mathrm{path}\:\mathrm{using} \\ $$$$\mathrm{Feynman}'\mathrm{s}\:\mathrm{trick}: \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\mathrm{arcsin}\:\frac{\mathrm{1}}{\:\sqrt{−{x}^{\mathrm{2}} +{x}+\mathrm{1}}}\:{dx}= \\ $$$$=\mathrm{2}\underset{\mathrm{0}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\mathrm{arctan}\:\frac{\mathrm{1}}{\:\sqrt{{x}}\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$$$ \\ $$$$\Omega\left(\alpha\right)=\mathrm{2}\underset{\mathrm{0}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\mathrm{arctan}\:\frac{\alpha}{\:\sqrt{{x}}\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$$$\Omega'\left(\alpha\right)=\mathrm{2}\underset{\mathrm{0}} {\overset{\mathrm{1}/\mathrm{2}} {\int}}\frac{\sqrt{{x}}\sqrt{\mathrm{1}−{x}}}{{x}\left(\mathrm{1}−{x}\right)+\alpha^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{arcsin}\:\sqrt{{x}}\:\rightarrow\:{dx}=\mathrm{2}\sqrt{{x}}\sqrt{\mathrm{1}−{x}}{dt}\right] \\ $$$$=\mathrm{4}\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\frac{\mathrm{cos}^{\mathrm{2}} \:{t}\:\mathrm{sin}^{\mathrm{2}} \:{t}}{\alpha^{\mathrm{2}} +\mathrm{cos}^{\mathrm{2}} \:{t}\:\mathrm{sin}^{\mathrm{2}} \:{t}}{dt}= \\ $$$$=\mathrm{4}\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}{dt}−\mathrm{4}\alpha^{\mathrm{2}} \underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\frac{{dt}}{\alpha^{\mathrm{2}} +\mathrm{cos}^{\mathrm{2}} \:{t}\:\mathrm{sin}^{\mathrm{2}} \:{t}}= \\ $$$$\:\:\:\:\:\left[{u}=\mathrm{tan}\:\mathrm{2}{t}\:\rightarrow\:{dt}=\frac{{du}}{\mathrm{2}\left({u}^{\mathrm{2}} +\mathrm{1}\right)}\right] \\ $$$$=\pi−\frac{\mathrm{8}\alpha^{\mathrm{2}} }{\mathrm{4}\alpha^{\mathrm{2}} +\mathrm{1}}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{du}}{{u}^{\mathrm{2}} +\frac{\mathrm{4}\alpha^{\mathrm{2}} }{\mathrm{4}\alpha^{\mathrm{2}} +\mathrm{1}}}= \\ $$$$=\pi−\frac{\mathrm{4}\alpha}{\:\sqrt{\mathrm{4}\alpha^{\mathrm{2}} +\mathrm{1}}}\left[\mathrm{arctan}\:\frac{\sqrt{\mathrm{4}\alpha^{\mathrm{2}} +\mathrm{1}}{u}}{\mathrm{2}\alpha}\right]_{\mathrm{0}} ^{\infty} = \\ $$$$=\pi\left(\mathrm{1}−\frac{\mathrm{2}\alpha}{\:\sqrt{\mathrm{4}\alpha^{\mathrm{2}} +\mathrm{1}}}\right)=\Omega'\left(\alpha\right) \\ $$$$\Omega\left(\alpha\right)=\pi\left(\int{d}\alpha−\int\frac{\mathrm{2}\alpha}{\:\sqrt{\mathrm{4}\alpha^{\mathrm{2}} +\mathrm{1}}}{d}\alpha\right)= \\ $$$$=\pi\left(\alpha−\frac{\sqrt{\mathrm{4}\alpha^{\mathrm{2}} +\mathrm{1}}}{\mathrm{2}}+{C}\right) \\ $$$$\Omega\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow\:{C}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Omega\left(\alpha\right)=\pi\left(\alpha−\frac{\sqrt{\mathrm{4}\alpha^{\mathrm{2}} +\mathrm{1}}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\Omega\left(\mathrm{1}\right)=\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\mathrm{2}}\pi=\frac{\pi}{\varphi^{\mathrm{2}} } \\ $$

Commented by Frix last updated on 12/Mar/25

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com