Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 173148 by JordanRoddy last updated on 07/Jul/22

    ∫_0 ^1 ^n (√x) (arcsin x) dx

$$ \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:^{\mathrm{n}} \sqrt{\mathrm{x}}\:\left(\mathrm{arcsin}\:\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by Mathspace last updated on 07/Jul/22

I_n =∫_0 ^1 (^n (√x))arcsinx dx we do  the changement arcsinx=t ⇒  x=sint and  I_n =∫_0 ^(π/2) (sint)^(1/n) t cost dt  =∫_0 ^(π/2) t(cost (sint)^(1/n) )dt  =[(t/(1+(1/n)))(sint)^(1+(1/n)) ]_0 ^(π/2)   −∫_0 ^(π/2) (n/(n+1))(sint)^(1+(1/n)) dt  ((πn)/(2(n+1)))−(n/(n+1))∫_0 ^(π/2) (sint)^(1+(1/n)) dt  we have ∫_0 ^(π/2) (cost)^(2p−1) .(sint)^(2q−1) dt  =B(ρ,q)=((Γ(ρ).Γ(q))/(Γ(ρ+q))) ⇒  2ρ−1=0 and 2q−1=1+(1/n)  ⇒ρ=(1/2) and q=1+(1/(2n))  ∫_0 ^(π/2) (sint)^(1+(1/n)) dt=((Γ((1/2))Γ(1+(1/(2n))))/(2Γ((1/2)+1+(1/(2n)))))  =((√π)/2)×((Γ(1+(1/(2n))))/(Γ((3/2)+(1/(2n))))) ⇒  I_n =((nπ)/(2(n+1)))−(n/(n+1)).((√π)/2)×((Γ(1+(1/(2n))))/(Γ((3/2)+(1/(2n)))))

$${I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(^{{n}} \sqrt{{x}}\right){arcsinx}\:{dx}\:{we}\:{do} \\ $$$${the}\:{changement}\:{arcsinx}={t}\:\Rightarrow \\ $$$${x}={sint}\:{and} \\ $$$${I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sint}\right)^{\frac{\mathrm{1}}{{n}}} {t}\:{cost}\:{dt} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {t}\left({cost}\:\left({sint}\right)^{\frac{\mathrm{1}}{{n}}} \right){dt} \\ $$$$=\left[\frac{{t}}{\mathrm{1}+\frac{\mathrm{1}}{{n}}}\left({sint}\right)^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} \right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{n}}{{n}+\mathrm{1}}\left({sint}\right)^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} {dt} \\ $$$$\frac{\pi{n}}{\mathrm{2}\left({n}+\mathrm{1}\right)}−\frac{{n}}{{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sint}\right)^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} {dt} \\ $$$${we}\:{have}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({cost}\right)^{\mathrm{2}{p}−\mathrm{1}} .\left({sint}\right)^{\mathrm{2}{q}−\mathrm{1}} {dt} \\ $$$$={B}\left(\rho,{q}\right)=\frac{\Gamma\left(\rho\right).\Gamma\left({q}\right)}{\Gamma\left(\rho+{q}\right)}\:\Rightarrow \\ $$$$\mathrm{2}\rho−\mathrm{1}=\mathrm{0}\:{and}\:\mathrm{2}{q}−\mathrm{1}=\mathrm{1}+\frac{\mathrm{1}}{{n}} \\ $$$$\Rightarrow\rho=\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:{q}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sint}\right)^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} {dt}=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)}{\mathrm{2}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)} \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{2}}×\frac{\Gamma\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)}\:\Rightarrow \\ $$$${I}_{{n}} =\frac{{n}\pi}{\mathrm{2}\left({n}+\mathrm{1}\right)}−\frac{{n}}{{n}+\mathrm{1}}.\frac{\sqrt{\pi}}{\mathrm{2}}×\frac{\Gamma\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)} \\ $$

Commented by Mathspace last updated on 07/Jul/22

sorry..∫_0 ^(π/2) (cost)^(2ρ−1) (sint)^(2q−1) dt  =(1/2)B(p,q)=((Γ(ρ).Γ(q))/(2Γ(ρ+q)))

$${sorry}..\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({cost}\right)^{\mathrm{2}\rho−\mathrm{1}} \left({sint}\right)^{\mathrm{2}{q}−\mathrm{1}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{B}\left({p},{q}\right)=\frac{\Gamma\left(\rho\right).\Gamma\left({q}\right)}{\mathrm{2}\Gamma\left(\rho+{q}\right)} \\ $$

Commented by Tawa11 last updated on 11/Jul/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com