Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 207652 by universe last updated on 22/May/24

   ∫_0 ^1 log(1+x^3 )dx  = ?and  ∫_0 ^1 log (1+x^4 )dx = ?    and if possible then find the value of  p   p   =   ∫_0 ^1 log(1+x^n )dx = ?      n∈N

$$\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{log}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx}\:\:=\:?{and}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{log}\:\left(\mathrm{1}+{x}^{\mathrm{4}} \right){dx}\:=\:? \\ $$$$\:\:\mathrm{and}\:\mathrm{if}\:\mathrm{possible}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{p} \\ $$$$\:\mathrm{p}\:\:\:=\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{log}\left(\mathrm{1}+{x}^{{n}} \right){dx}\:=\:?\:\:\:\:\:\:{n}\in\mathbb{N} \\ $$

Answered by Berbere last updated on 22/May/24

using x^n +1 =Π_(k=0) ^(n−1) (x−e^(i(2k+1)(π/n)) )=Π_(k=0) ^(n−1) ln(x−e^((i(2k+1)π)/n) )  ∫_0 ^1 ln(x−e^(i(((2k+1)π)/n))) )dx=ln(e^(i(π+((2k+1)/n)π)) (1−xe^((i(2k+1)π)/n) ))  using principal log representation  log(z)=ln∣z∣+iarg(z);arg(z)∈[−(π/2),((3π)/2)[  e^(i(π+((2k+1)/n)π)) =e^(i(−π+((2k+1)/n)π)) ;ln(e^(i(−π+((2k+1)/n)π)) )=i(−π+((2k+1)/n)π)  p=Σ_(k=0) ^(n−1) i(−π+((2k+1)/n)π)+Σ_(k=0) ^(n−1) ∫_0 ^1 ln(1−xe^(−i(((2k+1)/n))π) )dx  =Σ_(k=0) ^(n−1) ∫_0 ^1 ln(1−xe^(−i(((2k+1)/n))π) )dx  ln(1−xa)]_0 ^1 =(1/a)((ax−1)ln(1−xa)−ax)]_0 ^1   =(1/a)(a−1)ln(1−a)−1  =Σ_(k=0) ^(n−1) e^(i(((2k+1)/n))π) [(e^(−i(((2k+1)/n))π) −1)ln(1−e^(−((iπ)/n)(2k+1)) )−1]

$${using}\:{x}^{{n}} +\mathrm{1}\:=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({x}−{e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{{n}}} \right)=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}{ln}\left({x}−{e}^{\frac{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}} \right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}−{e}^{{i}\left(\frac{\left.\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}\right)} \right){dx}={ln}\left({e}^{{i}\left(\pi+\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)} \left(\mathrm{1}−{xe}^{\frac{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{{n}}} \right)\right) \\ $$$${using}\:{principal}\:{log}\:{representation} \\ $$$${log}\left({z}\right)={ln}\mid{z}\mid+{iarg}\left({z}\right);{arg}\left({z}\right)\in\left[−\frac{\pi}{\mathrm{2}},\frac{\mathrm{3}\pi}{\mathrm{2}}\left[\right.\right. \\ $$$${e}^{{i}\left(\pi+\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)} ={e}^{{i}\left(−\pi+\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)} ;{ln}\left({e}^{{i}\left(−\pi+\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)} \right)={i}\left(−\pi+\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right) \\ $$$${p}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{i}\left(−\pi+\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\pi\right)+\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{xe}^{−{i}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\right)\pi} \right){dx} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{xe}^{−{i}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\right)\pi} \right){dx} \\ $$$$\left.{l}\left.{n}\left(\mathrm{1}−{xa}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{{a}}\left(\left({ax}−\mathrm{1}\right){ln}\left(\mathrm{1}−{xa}\right)−{ax}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{{a}}\left({a}−\mathrm{1}\right){ln}\left(\mathrm{1}−{a}\right)−\mathrm{1} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{e}^{{i}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\right)\pi} \left[\left({e}^{−{i}\left(\frac{\mathrm{2}{k}+\mathrm{1}}{{n}}\right)\pi} −\mathrm{1}\right){ln}\left(\mathrm{1}−{e}^{−\frac{{i}\pi}{{n}}\left(\mathrm{2}{k}+\mathrm{1}\right)} \right)−\mathrm{1}\right] \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com