Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 150993 by talminator2856791 last updated on 17/Aug/21

                          ∫_0 ^( 1)  ((ln(x+1))/(x^2 +1)) dx = ?

$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\left({x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx}\:=\:? \\ $$$$\: \\ $$$$\: \\ $$

Commented by puissant last updated on 17/Aug/21

Q150986

$${Q}\mathrm{150986} \\ $$

Answered by Ar Brandon last updated on 17/Aug/21

∫_0 ^1 ((ln(x+1))/(x^2 +1))dx=∫_0 ^(π/4) ln(1+tanϑ)dϑ  =∫_0 ^(π/4) ln(sinϑ+cosϑ)dϑ−∫_0 ^(π/4) ln(cosϑ)dϑ  =(1/2)(G−((πln2)/4))−((G/2)−((πln2)/4))=−((πln2)/8)+((πln2)/4)=((πln2)/8)

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{tan}\vartheta\right){d}\vartheta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{sin}\vartheta+\mathrm{cos}\vartheta\right){d}\vartheta−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cos}\vartheta\right){d}\vartheta \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({G}−\frac{\pi\mathrm{ln2}}{\mathrm{4}}\right)−\left(\frac{{G}}{\mathrm{2}}−\frac{\pi\mathrm{ln2}}{\mathrm{4}}\right)=−\frac{\pi\mathrm{ln2}}{\mathrm{8}}+\frac{\pi\mathrm{ln2}}{\mathrm{4}}=\frac{\pi\mathrm{ln2}}{\mathrm{8}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com