Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 156864 by mnjuly1970 last updated on 16/Oct/21

      φ := ∫_0 ^( 1) (( ln (1−x^( 2) ))/(1+ x^( 2) )) dx =    proof :      φ = ∫_0 ^( 1) (( ln(1−x ))/(1+x^( 2) ))dx + (π/8)ln(2)      .... I= ∫_0 ^( 1) ((ln ( 1−x ))/(1+x^( 2) ))dx                =^(x=tan(t)) ∫_0 ^( (π/4)) ln( cos(t)−sin(t))dt−∫_0 ^( (π/4)) ln(cos(t))dt         = ∫_0 ^( (π/4)) ln((√2) )dt +∫_0 ^( (π/4)) ln(sin((π/4) −t))dt−(G/2) +(π/4)ln(2)     =((3π)/8) ln(2)−(G/2) −(G/2) −(π/4) ln(2)=(π/8)ln(2)−G      φ = (π/4)ln(2) − G      ■ m.n

$$ \\ $$$$\:\:\:\:\phi\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}\:\left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)}{\mathrm{1}+\:{x}^{\:\mathrm{2}} }\:{dx}\:= \\ $$$$\:\:{proof}\:: \\ $$$$\:\:\:\:\phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}\left(\mathrm{1}−{x}\:\right)}{\mathrm{1}+{x}^{\:\mathrm{2}} }{dx}\:+\:\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:....\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\:\left(\:\mathrm{1}−{x}\:\right)}{\mathrm{1}+{x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\overset{{x}={tan}\left({t}\right)} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left(\:{cos}\left({t}\right)−{sin}\left({t}\right)\right){dt}−\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({t}\right)\right){dt} \\ $$$$\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left(\sqrt{\mathrm{2}}\:\right){dt}\:+\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left({sin}\left(\frac{\pi}{\mathrm{4}}\:−{t}\right)\right){dt}−\frac{\mathrm{G}}{\mathrm{2}}\:+\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:=\frac{\mathrm{3}\pi}{\mathrm{8}}\:{ln}\left(\mathrm{2}\right)−\frac{\mathrm{G}}{\mathrm{2}}\:−\frac{\mathrm{G}}{\mathrm{2}}\:−\frac{\pi}{\mathrm{4}}\:{ln}\left(\mathrm{2}\right)=\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)−\mathrm{G} \\ $$$$\:\:\:\:\phi\:=\:\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)\:−\:\mathrm{G}\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$

Commented by mnjuly1970 last updated on 16/Oct/21

 God keep you sir  puissant .grateful

$$\:{God}\:{keep}\:{you}\:{sir} \\ $$$${puissant}\:.{grateful} \\ $$

Commented by puissant last updated on 16/Oct/21

∫_0 ^1 ((ln(1−x^2 ))/(1+x^2 ))dx=∫_0 ^1 ((ln(1−x)+ln(1+x))/(1+x^2 ))dx  =∫_0 ^1 ((ln(1−x))/(1+x^2 ))dx+∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx  = Q+K  K=∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx ; x=tanu→dx=(1+tan^2 u)du  ⇒ K=∫_0 ^(π/4) ln(1+tanu)du ; u=(π/4)−t→du=−dt  ⇒ K=∫_(π/4) ^0 ln(1+tan((π/4)−t))(−dt)  ⇒ K=∫_0 ^(π/4) ln(1+((1−tant)/(1+tant)))dt=∫_0 ^(π/4) ln((2/(1+tant)))dt  ⇒ 2K=∫_0 ^(π/4) ln2 dt ⇒ K= (π/8)ln2              ∴∵   K = (π/8)ln2..

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right)+{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\:{Q}+{K} \\ $$$${K}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:;\:{x}={tanu}\rightarrow{dx}=\left(\mathrm{1}+{tan}^{\mathrm{2}} {u}\right){du} \\ $$$$\Rightarrow\:{K}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{tanu}\right){du}\:;\:{u}=\frac{\pi}{\mathrm{4}}−{t}\rightarrow{du}=−{dt} \\ $$$$\Rightarrow\:{K}=\int_{\frac{\pi}{\mathrm{4}}} ^{\mathrm{0}} {ln}\left(\mathrm{1}+{tan}\left(\frac{\pi}{\mathrm{4}}−{t}\right)\right)\left(−{dt}\right) \\ $$$$\Rightarrow\:{K}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}−{tant}}{\mathrm{1}+{tant}}\right){dt}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\frac{\mathrm{2}}{\mathrm{1}+{tant}}\right){dt} \\ $$$$\Rightarrow\:\mathrm{2}{K}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\mathrm{2}\:{dt}\:\Rightarrow\:{K}=\:\frac{\pi}{\mathrm{8}}{ln}\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\therefore\because\:\:\:{K}\:=\:\frac{\pi}{\mathrm{8}}{ln}\mathrm{2}.. \\ $$

Commented by puissant last updated on 16/Oct/21

Great , Good sir Mnjuly1970.

$${Great}\:,\:{Good}\:{sir}\:{Mnjuly}\mathrm{1970}. \\ $$

Commented by mnjuly1970 last updated on 16/Oct/21

thanks alot ...

$${thanks}\:{alot}\:... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com