Question Number 156864 by mnjuly1970 last updated on 16/Oct/21 | ||
$$ \\ $$$$\:\:\:\:\phi\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}\:\left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)}{\mathrm{1}+\:{x}^{\:\mathrm{2}} }\:{dx}\:= \\ $$$$\:\:{proof}\:: \\ $$$$\:\:\:\:\phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}\left(\mathrm{1}−{x}\:\right)}{\mathrm{1}+{x}^{\:\mathrm{2}} }{dx}\:+\:\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:....\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\:\left(\:\mathrm{1}−{x}\:\right)}{\mathrm{1}+{x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\overset{{x}={tan}\left({t}\right)} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left(\:{cos}\left({t}\right)−{sin}\left({t}\right)\right){dt}−\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({t}\right)\right){dt} \\ $$$$\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left(\sqrt{\mathrm{2}}\:\right){dt}\:+\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left({sin}\left(\frac{\pi}{\mathrm{4}}\:−{t}\right)\right){dt}−\frac{\mathrm{G}}{\mathrm{2}}\:+\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:=\frac{\mathrm{3}\pi}{\mathrm{8}}\:{ln}\left(\mathrm{2}\right)−\frac{\mathrm{G}}{\mathrm{2}}\:−\frac{\mathrm{G}}{\mathrm{2}}\:−\frac{\pi}{\mathrm{4}}\:{ln}\left(\mathrm{2}\right)=\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)−\mathrm{G} \\ $$$$\:\:\:\:\phi\:=\:\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)\:−\:\mathrm{G}\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$ | ||
Commented by mnjuly1970 last updated on 16/Oct/21 | ||
$$\:{God}\:{keep}\:{you}\:{sir} \\ $$$${puissant}\:.{grateful} \\ $$ | ||
Commented by puissant last updated on 16/Oct/21 | ||
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right)+{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\:{Q}+{K} \\ $$$${K}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:;\:{x}={tanu}\rightarrow{dx}=\left(\mathrm{1}+{tan}^{\mathrm{2}} {u}\right){du} \\ $$$$\Rightarrow\:{K}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{tanu}\right){du}\:;\:{u}=\frac{\pi}{\mathrm{4}}−{t}\rightarrow{du}=−{dt} \\ $$$$\Rightarrow\:{K}=\int_{\frac{\pi}{\mathrm{4}}} ^{\mathrm{0}} {ln}\left(\mathrm{1}+{tan}\left(\frac{\pi}{\mathrm{4}}−{t}\right)\right)\left(−{dt}\right) \\ $$$$\Rightarrow\:{K}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}−{tant}}{\mathrm{1}+{tant}}\right){dt}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\frac{\mathrm{2}}{\mathrm{1}+{tant}}\right){dt} \\ $$$$\Rightarrow\:\mathrm{2}{K}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\mathrm{2}\:{dt}\:\Rightarrow\:{K}=\:\frac{\pi}{\mathrm{8}}{ln}\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\therefore\because\:\:\:{K}\:=\:\frac{\pi}{\mathrm{8}}{ln}\mathrm{2}.. \\ $$ | ||
Commented by puissant last updated on 16/Oct/21 | ||
$${Great}\:,\:{Good}\:{sir}\:{Mnjuly}\mathrm{1970}. \\ $$ | ||
Commented by mnjuly1970 last updated on 16/Oct/21 | ||
$${thanks}\:{alot}\:... \\ $$ | ||