Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 99818 by Ar Brandon last updated on 23/Jun/20

∫_0 ^1 ln(1+(1/(n^2 x^2 )))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }\right)\mathrm{dx} \\ $$

Answered by smridha last updated on 23/Jun/20

simply using by parts you get  Ans:ln(1+(1/n^2 ))+(2/n)tan^(−1) (n)

$$\boldsymbol{{simply}}\:\boldsymbol{{using}}\:\boldsymbol{{by}}\:\boldsymbol{{parts}}\:\boldsymbol{{you}}\:\boldsymbol{{get}} \\ $$$$\boldsymbol{{A}}{ns}:\boldsymbol{{ln}}\left(\mathrm{1}+\frac{\mathrm{1}}{\boldsymbol{{n}}^{\mathrm{2}} }\right)+\frac{\mathrm{2}}{\boldsymbol{{n}}}\mathrm{tan}^{−\mathrm{1}} \left(\boldsymbol{{n}}\right) \\ $$

Commented by Ar Brandon last updated on 23/Jun/20

THANKS

$$\mathbb{THANKS} \\ $$

Answered by mathmax by abdo last updated on 23/Jun/20

changement (1/(nx)) =t give nx =(1/t) ⇒x =(1/(nt)) ⇒dx =−(1/(nt^2 ))dt ⇒  I=∫_0 ^1  ln(1+(1/(n^2 t^2 )))dx =∫_(1/n) ^(+∞)  ln(1+t^2 )(dt/(nt^2 )) =(1/n) ∫_(1/n) ^(+∞)  ((ln(1+t^2 ))/t^2 ) dt by parts  ∫_(1/n) ^(+∞)  ((ln(1+t^2 ))/t^2 )dt =[−(1/t)ln(1+t^2 )]_(1/n) ^(+∞)  +∫_(1/n) ^(+∞)  (1/t)×((2t)/(1+t^2 ))dt  =nln(1+(1/n^2 )) +2  [arctant]_(1/n) ^(+∞)  =n ln(1+(1/n^2 ))+2{(π/2) −arctan((1/n))}  =n ln(1+(1/n^2 )) +2arctan(n) ⇒I =ln(1+(1/n^2 ))+((2arctan(n))/n)

$$\mathrm{changement}\:\frac{\mathrm{1}}{\mathrm{nx}}\:=\mathrm{t}\:\mathrm{give}\:\mathrm{nx}\:=\frac{\mathrm{1}}{\mathrm{t}}\:\Rightarrow\mathrm{x}\:=\frac{\mathrm{1}}{\mathrm{nt}}\:\Rightarrow\mathrm{dx}\:=−\frac{\mathrm{1}}{\mathrm{nt}^{\mathrm{2}} }\mathrm{dt}\:\Rightarrow \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} \mathrm{t}^{\mathrm{2}} }\right)\mathrm{dx}\:=\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{+\infty} \:\mathrm{ln}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\frac{\mathrm{dt}}{\mathrm{nt}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{n}}\:\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{+\infty} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{t}^{\mathrm{2}} }\:\mathrm{dt}\:\mathrm{by}\:\mathrm{parts} \\ $$$$\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{+\infty} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{t}^{\mathrm{2}} }\mathrm{dt}\:=\left[−\frac{\mathrm{1}}{\mathrm{t}}\mathrm{ln}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\right]_{\frac{\mathrm{1}}{\mathrm{n}}} ^{+\infty} \:+\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{+\infty} \:\frac{\mathrm{1}}{\mathrm{t}}×\frac{\mathrm{2t}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$$$=\mathrm{nln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\right)\:+\mathrm{2}\:\:\left[\mathrm{arctant}\right]_{\frac{\mathrm{1}}{\mathrm{n}}} ^{+\infty} \:=\mathrm{n}\:\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\right)+\mathrm{2}\left\{\frac{\pi}{\mathrm{2}}\:−\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{n}}\right)\right\} \\ $$$$=\mathrm{n}\:\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\right)\:+\mathrm{2arctan}\left(\mathrm{n}\right)\:\Rightarrow\mathrm{I}\:=\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\right)+\frac{\mathrm{2arctan}\left(\mathrm{n}\right)}{\mathrm{n}} \\ $$

Commented by Ar Brandon last updated on 23/Jun/20

cool, thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com