Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 174560 by mnjuly1970 last updated on 04/Aug/22

     Ω=∫_0 ^( 1) (( dx)/( (√(8+3x−(√(1+( x^( 2) +3x +2)(x^( 2) +7x+12)))))))

$$ \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{dx}}{\:\sqrt{\mathrm{8}+\mathrm{3}{x}−\sqrt{\mathrm{1}+\left(\:{x}^{\:\mathrm{2}} +\mathrm{3}{x}\:+\mathrm{2}\right)\left({x}^{\:\mathrm{2}} +\mathrm{7}{x}+\mathrm{12}\right)}}} \\ $$$$ \\ $$

Answered by MJS_new last updated on 04/Aug/22

1+(x^2 +3x+2)(x^2 +7x+12)=(x^2 +5x+5)^2   x^2 +5x+5>0∀x∈[0; 1]  ⇒  Ω=∫_0 ^1 (dx/( (√(−x^2 −2x+3))))=       [t=arcsin ((x+1)/2) → dx=(√(−x^2 −2x+3))dt]  =∫_(π/6) ^(π/2) dt=[t]_(π/6) ^(π/2) =(π/3)

$$\mathrm{1}+\left({x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{7}{x}+\mathrm{12}\right)=\left({x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{5}\right)^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{5}>\mathrm{0}\forall{x}\in\left[\mathrm{0};\:\mathrm{1}\right] \\ $$$$\Rightarrow \\ $$$$\Omega=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dx}}{\:\sqrt{−{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3}}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{arcsin}\:\frac{{x}+\mathrm{1}}{\mathrm{2}}\:\rightarrow\:{dx}=\sqrt{−{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3}}{dt}\right] \\ $$$$=\underset{\pi/\mathrm{6}} {\overset{\pi/\mathrm{2}} {\int}}{dt}=\left[{t}\right]_{\pi/\mathrm{6}} ^{\pi/\mathrm{2}} =\frac{\pi}{\mathrm{3}} \\ $$

Commented by mnjuly1970 last updated on 04/Aug/22

thanks slot...

$${thanks}\:{slot}... \\ $$

Answered by MJS_new last updated on 04/Aug/22

what′s more interesting:  ℧=∫_(−4+(√3)) ^1 (dx/( (√(8+3x−∣x^2 +5x+5∣))))=?

$$\mathrm{what}'\mathrm{s}\:\mathrm{more}\:\mathrm{interesting}: \\ $$$$\mho=\underset{−\mathrm{4}+\sqrt{\mathrm{3}}} {\overset{\mathrm{1}} {\int}}\frac{{dx}}{\:\sqrt{\mathrm{8}+\mathrm{3}{x}−\mid{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{5}\mid}}=? \\ $$

Commented by Ar Brandon last updated on 04/Aug/22

℧=∫_(−4+(√3)) ^α (dx/( (√(8+3x+x^2 +5x+5))))+∫_α ^1 (dx/( (√(8+3x−(x^2 +5x+5)))))  ℧=∫_(−4+(√3)) ^α (dx/( (√(x^2 +8x+13))))+∫_α ^1 (dx/( (√(3−2x−x^2 )))) , α=((−5+(√5))/2)      =∫_(−4+(√3)) ^α (dx/( (√((x+4)^2 −3))))+∫_α ^1 (dx/( (√(4−(x+1)^2 ))))      =[argch(((x+4)/( (√3))))]_(−4+(√3)) ^α +[arcsin(((x+1)/2))]_α ^1       =[ln∣(x+4)+(√(x^2 +8x+13))∣]_(−4+(√3)) ^α +(π/2)−arcsin((((√5)−4)/4))

$$\mho=\int_{−\mathrm{4}+\sqrt{\mathrm{3}}} ^{\alpha} \frac{{dx}}{\:\sqrt{\mathrm{8}+\mathrm{3}{x}+{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{5}}}+\int_{\alpha} ^{\mathrm{1}} \frac{{dx}}{\:\sqrt{\mathrm{8}+\mathrm{3}{x}−\left({x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{5}\right)}} \\ $$$$\mho=\int_{−\mathrm{4}+\sqrt{\mathrm{3}}} ^{\alpha} \frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{13}}}+\int_{\alpha} ^{\mathrm{1}} \frac{{dx}}{\:\sqrt{\mathrm{3}−\mathrm{2}{x}−{x}^{\mathrm{2}} }}\:,\:\alpha=\frac{−\mathrm{5}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\:\:\:\:=\int_{−\mathrm{4}+\sqrt{\mathrm{3}}} ^{\alpha} \frac{{dx}}{\:\sqrt{\left({x}+\mathrm{4}\right)^{\mathrm{2}} −\mathrm{3}}}+\int_{\alpha} ^{\mathrm{1}} \frac{{dx}}{\:\sqrt{\mathrm{4}−\left({x}+\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$$\:\:\:\:=\left[\mathrm{argch}\left(\frac{{x}+\mathrm{4}}{\:\sqrt{\mathrm{3}}}\right)\right]_{−\mathrm{4}+\sqrt{\mathrm{3}}} ^{\alpha} +\left[\mathrm{arcsin}\left(\frac{{x}+\mathrm{1}}{\mathrm{2}}\right)\right]_{\alpha} ^{\mathrm{1}} \\ $$$$\:\:\:\:=\left[\mathrm{ln}\mid\left({x}+\mathrm{4}\right)+\sqrt{{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{13}}\mid\right]_{−\mathrm{4}+\sqrt{\mathrm{3}}} ^{\alpha} +\frac{\pi}{\mathrm{2}}−\mathrm{arcsin}\left(\frac{\sqrt{\mathrm{5}}−\mathrm{4}}{\mathrm{4}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com