Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 153117 by peter frank last updated on 04/Sep/21

∫_0 ^1 cot^(−1) (1−x+x^2 )dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{cot}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{x}+\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$

Answered by puissant last updated on 04/Sep/21

I=∫_0 ^1 cot^(−1) (1−x+x^2 )dx  =∫_0 ^1 arctan((1/(1−x+x^2 )))dx  =∫_0 ^1 arctan(((x+(1−x))/(1−x(1−x))))dx  =∫_0 ^1 {arctan(1−x)+arctan(x)}dx  ∫_0 ^a f(x)dx=∫_0 ^a f(a−x)dx  ⇒ I=∫_0 ^1 arctan(x)dx+∫_0 ^1 arctan(x)dx  ⇒ I=2∫_0 ^1 arctan(x)dx   { ((u=arctan(x))),((v′=1)) :}⇒  { ((u′=(1/(1+x^2 )))),((v=x)) :}  ⇒ I=2[xarctan(x)]_0 ^1 −∫_0 ^1 ((2x)/(1+x^2 ))dx  ⇒ I=(π/2)−[ln∣1+x^2 ∣]_0 ^1     ∴∵   I  =  (π/2)−ln2..

$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} {cot}^{−\mathrm{1}} \left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}+{x}^{\mathrm{2}} }\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left(\frac{{x}+\left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}\left(\mathrm{1}−{x}\right)}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left\{{arctan}\left(\mathrm{1}−{x}\right)+{arctan}\left({x}\right)\right\}{dx} \\ $$$$\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{{a}} {f}\left({a}−{x}\right){dx} \\ $$$$\Rightarrow\:{I}=\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({x}\right){dx}+\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({x}\right){dx} \\ $$$$\Rightarrow\:{I}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({x}\right){dx} \\ $$$$\begin{cases}{{u}={arctan}\left({x}\right)}\\{{v}'=\mathrm{1}}\end{cases}\Rightarrow\:\begin{cases}{{u}'=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }}\\{{v}={x}}\end{cases} \\ $$$$\Rightarrow\:{I}=\mathrm{2}\left[{xarctan}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\Rightarrow\:{I}=\frac{\pi}{\mathrm{2}}−\left[{ln}\mid\mathrm{1}+{x}^{\mathrm{2}} \mid\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$ \\ $$$$\therefore\because\:\:\:{I}\:\:=\:\:\frac{\pi}{\mathrm{2}}−{ln}\mathrm{2}.. \\ $$

Commented by puissant last updated on 04/Sep/21

arctan(x)+arctan((1/x))=(π/2) , ∀x>0  d′autre part cot^(−1) (x)=arctan((1/x))  ⇒ cot^(−1) ((1/x))=arctan(x), alors  tan^(−1) (x)+cot^(−1) ((1/x))=2tan^(−1) (x)≠(π/2)..

$${arctan}\left({x}\right)+{arctan}\left(\frac{\mathrm{1}}{{x}}\right)=\frac{\pi}{\mathrm{2}}\:,\:\forall{x}>\mathrm{0} \\ $$$${d}'{autre}\:{part}\:{cot}^{−\mathrm{1}} \left({x}\right)={arctan}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$$$\Rightarrow\:{cot}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right)={arctan}\left({x}\right),\:{alors} \\ $$$${tan}^{−\mathrm{1}} \left({x}\right)+{cot}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right)=\mathrm{2}{tan}^{−\mathrm{1}} \left({x}\right)\neq\frac{\pi}{\mathrm{2}}.. \\ $$

Commented by Ar Brandon last updated on 04/Sep/21

Oui je me rappel maintenant.  Putains ! trop de vitesse. Haha !  Tu m′as eu.

$$\mathrm{Oui}\:\mathrm{je}\:\mathrm{me}\:\mathrm{rappel}\:\mathrm{maintenant}. \\ $$$$\mathrm{Putains}\:!\:\mathrm{trop}\:\mathrm{de}\:\mathrm{vitesse}.\:\mathrm{Haha}\:! \\ $$$$\mathrm{Tu}\:\mathrm{m}'\mathrm{as}\:\mathrm{eu}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com