Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 126997 by bramlexs22 last updated on 26/Dec/20

  ∫_0 ^1  arcsin (((sin x)/( (√2)))) dx =?

$$\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{arcsin}\:\left(\frac{\mathrm{sin}\:{x}}{\:\sqrt{\mathrm{2}}}\right)\:{dx}\:=? \\ $$

Answered by Evimene last updated on 26/Dec/20

solution  let (√2)=α  f(α)=∫_0 ^1 arcsin(((sinx)/α))dx⇔differentiating α  f′(α)=∫_0 ^1 (α^2 /(α^2 −sin^2 x))dx⇔multiply by ((sec^2 x)/(sec^2 x))  f^′ (α)=∫_0 ^1 ((α^2 sec^2 x)/(α^2 sec^2 x−α^2 tan^2 x))dx⇔recall sec^2 x+tan^2 x=1  f′(α)=∫_0 ^1 sec^2 xdx;⇔[tanx]_0 ^1   f^1 (α)=(π/4)  f(α)=(π/4)x+c⇔f(0)=0;so c=0  f(α)=(π/4)  cadet praise

$$\mathrm{solution} \\ $$$$\mathrm{let}\:\sqrt{\mathrm{2}}=\alpha \\ $$$$\mathrm{f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{arcsin}\left(\frac{\mathrm{sinx}}{\alpha}\right)\mathrm{dx}\Leftrightarrow\mathrm{differentiating}\:\alpha \\ $$$$\mathrm{f}'\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\alpha^{\mathrm{2}} }{\alpha^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\Leftrightarrow\mathrm{multiply}\:\mathrm{by}\:\frac{\mathrm{sec}^{\mathrm{2}} \mathrm{x}}{\mathrm{sec}^{\mathrm{2}} \mathrm{x}} \\ $$$$\mathrm{f}^{'} \left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\alpha^{\mathrm{2}} \mathrm{sec}^{\mathrm{2}} \mathrm{x}}{\alpha^{\mathrm{2}} \mathrm{sec}^{\mathrm{2}} \mathrm{x}−\alpha^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}\Leftrightarrow\mathrm{recall}\:\mathrm{sec}^{\mathrm{2}} \mathrm{x}+\mathrm{tan}^{\mathrm{2}} \mathrm{x}=\mathrm{1} \\ $$$$\mathrm{f}'\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{sec}^{\mathrm{2}} \mathrm{xdx};\Leftrightarrow\left[\mathrm{tanx}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\mathrm{f}^{\mathrm{1}} \left(\alpha\right)=\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{f}\left(\alpha\right)=\frac{\pi}{\mathrm{4}}\mathrm{x}+\mathrm{c}\Leftrightarrow\mathrm{f}\left(\mathrm{0}\right)=\mathrm{0};\mathrm{so}\:\mathrm{c}=\mathrm{0} \\ $$$$\mathrm{f}\left(\alpha\right)=\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{cadet}\:\mathrm{praise} \\ $$

Commented by bramlexs22 last updated on 26/Dec/20

Feynmann method?

$${Feynmann}\:{method}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com