Question Number 220889 by Nicholas666 last updated on 20/May/25 | ||
![]() | ||
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\int\int\int_{\:\left[\mathrm{0},\mathrm{1}\left[^{\:\mathrm{3}} \right.\right.} \:\frac{\mathrm{1}}{\mathrm{1}\:+\:{xyz}}\:{dxdydz} \\ $$$$ \\ $$ | ||
Answered by breniam last updated on 20/May/25 | ||
![]() | ||
$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left({xyz}\right)^{{n}} \mathrm{d}{x}\mathrm{d}{y}\mathrm{d}{z}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left({xy}\right)^{{n}} \mathrm{d}{x}\mathrm{d}{y}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\mathrm{3}} }= \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{3}} }−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)^{\mathrm{3}} }=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} }−\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)^{\mathrm{3}} }= \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{4}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} }=\frac{\mathrm{3}}{\mathrm{4}}\zeta\left(\mathrm{3}\right) \\ $$ | ||
Answered by Wuji last updated on 20/May/25 | ||
![]() | ||
$$ \\ $$$$\int\int\int_{\left(\mathrm{0},\mathrm{1}\right)^{\mathrm{3}} } \frac{\mathrm{1}}{\mathrm{1}+{xyz}}{dxdydz} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{xyz}}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left({xyz}\right)^{{n}} \:\:\:\:\:\:\:\left\{\mid{xyz}\mid\leqslant\mathrm{1}\right\} \\ $$$$\Rightarrow\int\int\int_{\left(\mathrm{0},\mathrm{1}\right)^{\mathrm{3}} } \frac{\mathrm{1}}{\mathrm{1}+{xyz}}{dxdydz}\:=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \int\int\int_{\left(\mathrm{0},\mathrm{1}\right)^{\mathrm{3}} } {x}^{{n}} {y}^{{n}} {z}^{{n}} {dxdydz} \\ $$$$\int\int\int_{\left(\mathrm{0},\mathrm{1}\right)^{\mathrm{3}} } {x}^{{n}} {y}^{{n}} {z}^{{n}} {dxdydz}\:=\left(\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {dx}\right)\left(\int_{\mathrm{0}} ^{\mathrm{1}} {y}^{{n}} {dy}\right)\left(\int_{\mathrm{0}} ^{\mathrm{1}} {z}^{{n}} {dz}\right)=\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)^{\mathrm{3}} \\ $$$$\int\int\int_{\left(\mathrm{0},\mathrm{1}\right)^{\mathrm{3}} } \frac{\mathrm{1}}{\mathrm{1}+{xyz}}\:=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }\:=\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}−\mathrm{1}} }{{m}^{\mathrm{3}} } \\ $$$$\eta\left({s}\right)\:=\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}−\mathrm{1}} }{{m}^{{s}} }\:\:\:\:\:\left\{{eta}\:{function}\right\} \\ $$$$\Rightarrow\eta\left(\mathrm{3}\right)=\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{m}−\mathrm{1}} }{{m}^{\mathrm{3}} }\: \\ $$$$\eta\left({s}\right)=\left(\mathrm{1}−\mathrm{2}^{\mathrm{1}−{s}} \right)\zeta\left({s}\right) \\ $$$$\eta\left(\mathrm{3}\right)=\left(\mathrm{1}−\mathrm{2}^{−\mathrm{2}} \right)\zeta\left(\mathrm{3}\right)\:\:=\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right)\zeta\left(\mathrm{3}\right) \\ $$$$\eta\left(\mathrm{3}\right)=\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\zeta\left(\mathrm{3}\right) \\ $$ | ||