Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 222996 by MrGaster last updated on 12/Jul/25

∫_0 ^1 (2−x^2 )^(3/2) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{2}−{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} {dx} \\ $$

Answered by MrGaster last updated on 12/Jul/25

Answered by MrGaster last updated on 12/Jul/25

(2):x=(√2)sinθ,dx=(√2)cosθdθ,θ∈[0,(π/4)]  =∫_0 ^(π/4) (2−2sin^2 θ)^(3/2) (√2)cosθdθ=∫_0 ^(π/4) [2cos^2 θ]^(3/2) (√2)cosθdθ=∫_0 ^(π/4) 2^(3/2) cos^3 θ∙(√2)cosθdθ  =∫_0 ^(π/4) 2^2 cos^4 θdθ=4∫_0 ^(π/4) cos^4 θdθ  cos^4 θ(((1+cos2θ)/θ))^2 =(1/4)(1+2cos2θ+cos^2 2θ)=(1/4)(1+2 cos 2θ+((1−cos4θ)/2))  =(1/4)((3/2)+2cos2θ+(1/2)cos4θ)=(3/8)+(1/2)cos2θ+(1/8)cos4θ  ∫_0 ^(π/4) cos^4 θdθ=∫_0 ^(π/4) ((3/8)+(1/2)cos2θ+(1/8)cos 4θ)dθ=[(3/8)θ+(1/4)sin2θ+(1/(32))sin4θ]_0 ^(π/4)   =((3/8)∙(π/4)+(1/4)sin(π/2)+(1/(32))sin π)−(0+0+0)=((3π)/(32))+(1/4)∙1+0=((3π)/(32))+(1/4)  4×(((3π)/(32))+(1/4))=4∙((3π)/(32))+4∙(1/4)=((12π)/(32))+1=((3π)/8)+1

$$\left(\mathrm{2}\right):{x}=\sqrt{\mathrm{2}}\mathrm{sin}\theta,{dx}=\sqrt{\mathrm{2}}\mathrm{cos}\theta\mathrm{d}\theta,\theta\in\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right] \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \left(\mathrm{2}−\mathrm{2sin}^{\mathrm{2}} \theta\right)^{\mathrm{3}/\mathrm{2}} \sqrt{\mathrm{2}}\mathrm{cos}\theta\mathrm{d}\theta=\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \left[\mathrm{2cos}^{\mathrm{2}} \theta\right]^{\mathrm{3}/\mathrm{2}} \sqrt{\mathrm{2}}\mathrm{cos}\theta\mathrm{d}\theta=\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{2}^{\mathrm{3}/\mathrm{2}} \mathrm{cos}^{\mathrm{3}} \theta\centerdot\sqrt{\mathrm{2}}\mathrm{cos}\theta\mathrm{d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{2}^{\mathrm{2}} \mathrm{cos}^{\mathrm{4}} \theta\mathrm{d}\theta=\mathrm{4}\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{cos}^{\mathrm{4}} \theta\mathrm{d}\theta \\ $$$$\mathrm{cos}^{\mathrm{4}} \theta\left(\frac{\mathrm{1}+\mathrm{cos2}\theta}{\theta}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{2cos2}\theta+\mathrm{cos}^{\mathrm{2}} \mathrm{2}\theta\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\theta+\frac{\mathrm{1}−\mathrm{cos4}\theta}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{2cos2}\theta+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos4}\theta\right)=\frac{\mathrm{3}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos2}\theta+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos4}\theta \\ $$$$\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{cos}^{\mathrm{4}} \theta\mathrm{d}\theta=\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \left(\frac{\mathrm{3}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos2}\theta+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos}\:\mathrm{4}\theta\right)\mathrm{d}\theta=\left[\frac{\mathrm{3}}{\mathrm{8}}\theta+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin2}\theta+\frac{\mathrm{1}}{\mathrm{32}}\mathrm{sin4}\theta\right]_{\mathrm{0}} ^{\pi/\mathrm{4}} \\ $$$$=\left(\frac{\mathrm{3}}{\mathrm{8}}\centerdot\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\frac{\pi}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{32}}\mathrm{sin}\:\pi\right)−\left(\mathrm{0}+\mathrm{0}+\mathrm{0}\right)=\frac{\mathrm{3}\pi}{\mathrm{32}}+\frac{\mathrm{1}}{\mathrm{4}}\centerdot\mathrm{1}+\mathrm{0}=\frac{\mathrm{3}\pi}{\mathrm{32}}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{4}×\left(\frac{\mathrm{3}\pi}{\mathrm{32}}+\frac{\mathrm{1}}{\mathrm{4}}\right)=\mathrm{4}\centerdot\frac{\mathrm{3}\pi}{\mathrm{32}}+\mathrm{4}\centerdot\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{12}\pi}{\mathrm{32}}+\mathrm{1}=\frac{\mathrm{3}\pi}{\mathrm{8}}+\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com