Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 122069 by Dwaipayan Shikari last updated on 13/Nov/20

∫_0 ^1 (1/( ((x^(96) −x^(97) ))^(1/(97)) ))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{\mathrm{97}}]{{x}^{\mathrm{96}} −{x}^{\mathrm{97}} }}{dx} \\ $$

Answered by mindispower last updated on 14/Nov/20

=∫_0 ^1 x^(−((96)/(97))) (1−x)^(−(1/(97))) dx  =∫_0 ^1 x^((1/(97))−1) (1−x)^(((96)/(97))−1) dx=β((1/(97)),((96)/(97)))=((Γ((1/(97)))Γ(((96)/(97))))/(Γ(1)))  =Γ((1/(97)))Γ(1−(1/(97)))=(π/(sin((π/(97)))))

$$=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{−\frac{\mathrm{96}}{\mathrm{97}}} \left(\mathrm{1}−{x}\right)^{−\frac{\mathrm{1}}{\mathrm{97}}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\frac{\mathrm{1}}{\mathrm{97}}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{\frac{\mathrm{96}}{\mathrm{97}}−\mathrm{1}} {dx}=\beta\left(\frac{\mathrm{1}}{\mathrm{97}},\frac{\mathrm{96}}{\mathrm{97}}\right)=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{97}}\right)\Gamma\left(\frac{\mathrm{96}}{\mathrm{97}}\right)}{\Gamma\left(\mathrm{1}\right)} \\ $$$$=\Gamma\left(\frac{\mathrm{1}}{\mathrm{97}}\right)\Gamma\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{97}}\right)=\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{97}}\right)} \\ $$

Commented by Dwaipayan Shikari last updated on 14/Nov/20

I excepted this. Thanking you

$${I}\:{excepted}\:{this}.\:{Thanking}\:{you} \\ $$

Commented by mindispower last updated on 14/Nov/20

withe pleaser sir ,i find the previous sum  you right 1/24 nice day god bless you

$${withe}\:{pleaser}\:{sir}\:,{i}\:{find}\:{the}\:{previous}\:{sum} \\ $$$${you}\:{right}\:\mathrm{1}/\mathrm{24}\:{nice}\:{day}\:{god}\:{bless}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com