Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 205625 by Lindemann last updated on 25/Mar/24

∫_0 ^1 (√(1−x^4 ))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{dx} \\ $$

Answered by mathzup last updated on 25/Mar/24

I=∫_0 ^1 (1−x^4 )^(1/2) dx     (x=t^(1/4) )  =(1/4)∫_0 ^1 (1−t)^(1/2)  t^((1/4)−1) dt  we know B(p,q)=∫_0 ^1 t^(p−1) (1−t)^(q−1) dt (p>0 et q>0)  ⇒I=(1/4)∫_0 ^1 t^((1/4)−1) (1−t)^((3/2)−1) dt  =(1/4)B((1/4),(3/2))=(1/4)((Γ((1/4))Γ((3/2)))/(Γ((1/4)+(3/2))))  but Γ((3/2))=Γ(1+(1/2))=(1/2)Γ((1/2))=((√π)/2)  Γ((1/4)+(3/2))=Γ((1/4)+1+(1/2))  =Γ((3/4)+1)=(3/4)Γ((3/4)) ⇒  I=(1/4)((Γ((1/4)).((√π)/2))/((3/4)Γ((3/4))))=((√π)/6)×((Γ((1/4)))/(Γ((3/4))))  Γ((1/4)).Γ((3/4))=Γ((1/4))Γ(1−(1/4))=(π/(sin((π/4))))  =(√2)π

$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{4}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dx}\:\:\:\:\:\left({x}={t}^{\frac{\mathrm{1}}{\mathrm{4}}} \right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:{t}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} {dt} \\ $$$${we}\:{know}\:{B}\left({p},{q}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{p}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{q}−\mathrm{1}} {dt}\:\left({p}>\mathrm{0}\:{et}\:{q}>\mathrm{0}\right) \\ $$$$\Rightarrow{I}=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}{B}\left(\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{4}}\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$$${but}\:\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\Gamma\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{2}}\right)=\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}+\mathrm{1}\right)=\frac{\mathrm{3}}{\mathrm{4}}\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\:\Rightarrow \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{4}}\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right).\frac{\sqrt{\pi}}{\mathrm{2}}}{\frac{\mathrm{3}}{\mathrm{4}}\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}=\frac{\sqrt{\pi}}{\mathrm{6}}×\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)} \\ $$$$\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right).\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)=\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\Gamma\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right)=\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{4}}\right)} \\ $$$$=\sqrt{\mathrm{2}}\pi \\ $$

Commented by Frix last updated on 26/Mar/24

Something went wrong.  (√2)π>4 but obviously ∫_0 ^1 (√(1−x^4 ))dx<1

$$\mathrm{Something}\:\mathrm{went}\:\mathrm{wrong}. \\ $$$$\sqrt{\mathrm{2}}\pi>\mathrm{4}\:\mathrm{but}\:\mathrm{obviously}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{dx}<\mathrm{1} \\ $$

Commented by Lindemann last updated on 26/Mar/24

exactly.  it is possible to do this without the  beta function ?

$${exactly}. \\ $$$${it}\:{is}\:{possible}\:{to}\:{do}\:{this}\:{without}\:{the} \\ $$$${beta}\:{function}\:? \\ $$

Commented by mr W last updated on 26/Mar/24

I=((√π)/6)×((Γ((1/4)))/(Γ((3/4))))≈0.87401918 ≠(√2)π

$${I}=\frac{\sqrt{\pi}}{\mathrm{6}}×\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}\approx\mathrm{0}.\mathrm{87401918}\:\neq\sqrt{\mathrm{2}}\pi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com