Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53078 by gunawan last updated on 16/Jan/19

∫_0 ^1 (1/((x^3 +1)^(3/2) )) dx=...

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}} }\:{dx}=... \\ $$

Commented by MJS last updated on 17/Jan/19

≈.774606

$$\approx.\mathrm{774606} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jan/19

1+x^3 >1+x^2   (1/(1+x^3 ))<(1/(1+x^2 ))  but in the interval [0,1]  (1/((1+x^3 )^(3/2) ))>(1/((1+x^2 )^(3/2) so))  i am rectifying  ∫_0 ^1 (dx/((1+x^3 )^(3/2) ))>∫_0 ^1 (dx/((1+x^2 )^(3/2) ))  now   ∫_0 ^1 (dx/((1+x^2 )^(3/2) ))  x=tana     ∫_0 ^(π/4) ((sec^2 a)/((1+tan^2 a)^(3/2) ))da  ∫_0 ^(π/4) ((sec^2 ada)/(sec^3 a))  ∫_0 ^(π/4) cosada  ∣sina∣_0 ^(π/4)   =(1/(√2))  so      I>(1/(√2))  I>0.71  attaching graph...  answer yet to find....

$$\mathrm{1}+{x}^{\mathrm{3}} >\mathrm{1}+{x}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{3}} }<\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${but}\:{in}\:{the}\:{interval}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }>\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} {so}} \\ $$$${i}\:{am}\:{rectifying} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }>\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${now}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${x}={tana}\:\:\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{sec}^{\mathrm{2}} {a}}{\left(\mathrm{1}+{tan}^{\mathrm{2}} {a}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{da} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{sec}^{\mathrm{2}} {ada}}{{sec}^{\mathrm{3}} {a}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {cosada} \\ $$$$\mid{sina}\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}} \\ $$$${so}\:\:\:\:\:\:{I}>\frac{\mathrm{1}}{\sqrt{\mathrm{2}}} \\ $$$${I}>\mathrm{0}.\mathrm{71} \\ $$$${attaching}\:{graph}... \\ $$$${answer}\:{yet}\:{to}\:{find}.... \\ $$$$ \\ $$$$ \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 17/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 17/Jan/19

area of trapazium calculation  whenf(x)=(1/((1+x^3 )^(3/2) ))  at x=1   f(1)=(1/((2)^(3/2) ))=(1/(2(√2)))  at x=0  f(0)=(1/((1+0)^(3/2) ))=1  so area of trapazium=(1/2)[f(0)+f(1)]×1  =(1/2)(1+(1/(2(√2))))×1=0.68  from graph it is clear that area bounded i,e  ∫_0 ^1 (dx/((1+x^3 )^(3/2) ))>0.68

$${area}\:{of}\:{trapazium}\:{calculation} \\ $$$${whenf}\left({x}\right)=\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${at}\:{x}=\mathrm{1}\:\:\:{f}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\left(\mathrm{2}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$${at}\:{x}=\mathrm{0}\:\:{f}\left(\mathrm{0}\right)=\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{0}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }=\mathrm{1} \\ $$$${so}\:{area}\:{of}\:{trapazium}=\frac{\mathrm{1}}{\mathrm{2}}\left[{f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right)\right]×\mathrm{1} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\right)×\mathrm{1}=\mathrm{0}.\mathrm{68} \\ $$$${from}\:{graph}\:{it}\:{is}\:{clear}\:{that}\:{area}\:{bounded}\:{i},{e} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }>\mathrm{0}.\mathrm{68} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com