Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 83226 by 09658867628 last updated on 28/Feb/20

 ∫_( 0) ^1   (1/(x^2 +2x cos α+1)) dx =

$$\:\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{2}{x}\:\mathrm{cos}\:\alpha+\mathrm{1}}\:{dx}\:= \\ $$

Commented by mathmax by abdo last updated on 29/Feb/20

I =∫_0 ^1   (dx/((x+cosα)^2  +sin^2 α))changement x+cosα =sinα)u give  I =∫_(cotanα) ^((1+cosα)/(sinα))   ((sinα du)/(sin^2 α(1+u^2 ))) =(1/(sinα))[arctanu]_(1/(tanα)) ^(1/(tan((α/2))))   =(1/(sinα)){ arctan((1/(tan((α/2)))))−arctan((1/(tanα)))}  if tanα>0 we get I =(1/(sinα)){(π/2)−(α/2)−(π/2) +α} =(α/(2sinα)) ....

$$\left.{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\left({x}+{cos}\alpha\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \alpha}{changement}\:{x}+{cos}\alpha\:={sin}\alpha\right){u}\:{give} \\ $$$${I}\:=\int_{{cotan}\alpha} ^{\frac{\mathrm{1}+{cos}\alpha}{{sin}\alpha}} \:\:\frac{{sin}\alpha\:{du}}{{sin}^{\mathrm{2}} \alpha\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{{sin}\alpha}\left[{arctanu}\right]_{\frac{\mathrm{1}}{{tan}\alpha}} ^{\frac{\mathrm{1}}{{tan}\left(\frac{\alpha}{\mathrm{2}}\right)}} \\ $$$$=\frac{\mathrm{1}}{{sin}\alpha}\left\{\:{arctan}\left(\frac{\mathrm{1}}{{tan}\left(\frac{\alpha}{\mathrm{2}}\right)}\right)−{arctan}\left(\frac{\mathrm{1}}{{tan}\alpha}\right)\right\} \\ $$$${if}\:{tan}\alpha>\mathrm{0}\:{we}\:{get}\:{I}\:=\frac{\mathrm{1}}{{sin}\alpha}\left\{\frac{\pi}{\mathrm{2}}−\frac{\alpha}{\mathrm{2}}−\frac{\pi}{\mathrm{2}}\:+\alpha\right\}\:=\frac{\alpha}{\mathrm{2}{sin}\alpha}\:.... \\ $$

Answered by MJS last updated on 28/Feb/20

∫(dx/(x^2 +2xcos α +1))=  =∫(dx/((x+cos α)^2 +1−cos^2  α))=       [t=((x+cos α)/(√(1−cos^2  α))) → dx=dt(√(1−cos^2  α))]       [of course (√(1−cos^2  α))=∣sin α∣]  =(1/(∣sin α∣))∫(dt/(t^2 +1))=((arctan t)/(∣sin α∣))=((arctan ((x+cos α)/(∣sin α∣)))/(∣sin α∣)) +C

$$\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}{x}\mathrm{cos}\:\alpha\:+\mathrm{1}}= \\ $$$$=\int\frac{{dx}}{\left({x}+\mathrm{cos}\:\alpha\right)^{\mathrm{2}} +\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\alpha}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{x}+\mathrm{cos}\:\alpha}{\sqrt{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\alpha}}\:\rightarrow\:{dx}={dt}\sqrt{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\alpha}\right] \\ $$$$\:\:\:\:\:\left[\mathrm{of}\:\mathrm{course}\:\sqrt{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\alpha}=\mid\mathrm{sin}\:\alpha\mid\right] \\ $$$$=\frac{\mathrm{1}}{\mid\mathrm{sin}\:\alpha\mid}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{arctan}\:{t}}{\mid\mathrm{sin}\:\alpha\mid}=\frac{\mathrm{arctan}\:\frac{{x}+\mathrm{cos}\:\alpha}{\mid\mathrm{sin}\:\alpha\mid}}{\mid\mathrm{sin}\:\alpha\mid}\:+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com