Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 144876 by qaz last updated on 30/Jun/21

          ∫_0 ^1 ((1/(sin x))−(1/x))dx=ln(2tan (1/2))

$$\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{x}}\right)\mathrm{dx}=\mathrm{ln}\left(\mathrm{2tan}\:\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$

Answered by mindispower last updated on 30/Jun/21

  sin(x)=((2tg((x/2)))/(1+tg^2 ((x/2))))  ⇔∫_0 ^1 ((1+tg^2 ((x/2)))/(2tg((x/2))))−(1/x)dx  =∫_t ^1 (1/(tg((x/2)))).d(tg((x/2)))−∫_t ^1 (dx/x)=f(t)  =ln(tg((x/2)))−ln(x)]_t ^1   =ln(tg((1/2)))+ln((t/(tg((t/2)))))  lim_(x→0) f(x)=∫_0 ^1 (1/(sin(x)))−(1/x)dx  lim_(x→0) f(x)=ln(tg((1/2)))+ln(2)  =ln(2tg((1/2)))

$$ \\ $$$${sin}\left({x}\right)=\frac{\mathrm{2}{tg}\left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{1}+{tg}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)} \\ $$$$\Leftrightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}+{tg}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{2}{tg}\left(\frac{{x}}{\mathrm{2}}\right)}−\frac{\mathrm{1}}{{x}}{dx} \\ $$$$=\int_{{t}} ^{\mathrm{1}} \frac{\mathrm{1}}{{tg}\left(\frac{{x}}{\mathrm{2}}\right)}.{d}\left({tg}\left(\frac{{x}}{\mathrm{2}}\right)\right)−\int_{{t}} ^{\mathrm{1}} \frac{{dx}}{{x}}={f}\left({t}\right) \\ $$$$\left.={ln}\left({tg}\left(\frac{{x}}{\mathrm{2}}\right)\right)−{ln}\left({x}\right)\right]_{{t}} ^{\mathrm{1}} \\ $$$$={ln}\left({tg}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right)+{ln}\left(\frac{{t}}{{tg}\left(\frac{{t}}{\mathrm{2}}\right)}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{sin}\left({x}\right)}−\frac{\mathrm{1}}{{x}}{dx} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left({x}\right)={ln}\left({tg}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right)+{ln}\left(\mathrm{2}\right) \\ $$$$={ln}\left(\mathrm{2}{tg}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 30/Jun/21

    very nice solution...

$$\:\:\:\:{very}\:{nice}\:{solution}... \\ $$

Commented by qaz last updated on 30/Jun/21

thanks a lot

$$\mathrm{thanks}\:\mathrm{a}\:\mathrm{lot} \\ $$

Commented by mindispower last updated on 04/Jul/21

pleasur sir

$${pleasur}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com