Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 150627 by puissant last updated on 14/Aug/21

∫_0 ^1 (((−1)^(E((1/x))) dx)/x)

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{E}\left(\frac{\mathrm{1}}{{x}}\right)} {dx}}{{x}} \\ $$

Answered by puissant last updated on 14/Aug/21

∫_0 ^1 (((−1)^(E((1/x))) )/x)dx  ∀ x∈]0;1[,  E((1/x)) existe et E((1/x))=k ⇔ k≤(1/x)<k+1  ⇔ x ∈ ](1/(k+1));(1/k)]   soit X∈]0;1], ∃ ! n/ (1/(n+1))<X≤(1/n) ∧ lim_(X→0^+ ) n=+∞  on a:  ∫_X ^1 (((−1)^(E((1/x))) )/x)dx  =∫_X ^(1/n) (((−1)^n )/x)dx+Σ_(k=1) ^(n−1) ∫_(1/(k+1)) ^(1/k) (((−1)^k )/x)dx  =(−1)^n ln((1/(nX)))+Σ_(k=1) ^(n−1) (−1)^k ln(((k+1)/k))  or  (n/(n+1))<nX≤1  ⇒ lim_(X→0^+ ) ln((1/(nX)))=0  (−1)^k ln(1+(1/k)) converge.  D′ou lim_(X→0^+ ) ∫_X ^1 (((−1)^(E((1/x))) )/dx)=ln((2/π))...

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{E}\left(\frac{\mathrm{1}}{{x}}\right)} }{{x}}{dx} \\ $$$$\left.\forall\:{x}\in\right]\mathrm{0};\mathrm{1}\left[,\right. \\ $$$${E}\left(\frac{\mathrm{1}}{{x}}\right)\:{existe}\:{et}\:{E}\left(\frac{\mathrm{1}}{{x}}\right)={k}\:\Leftrightarrow\:{k}\leqslant\frac{\mathrm{1}}{{x}}<{k}+\mathrm{1} \\ $$$$\left.\Leftrightarrow\left.\:{x}\:\in\:\right]\frac{\mathrm{1}}{{k}+\mathrm{1}};\frac{\mathrm{1}}{{k}}\right]\: \\ $$$$\left.{s}\left.{oit}\:{X}\in\right]\mathrm{0};\mathrm{1}\right],\:\exists\:!\:{n}/\:\frac{\mathrm{1}}{{n}+\mathrm{1}}<{X}\leqslant\frac{\mathrm{1}}{{n}}\:\wedge\:{lim}_{{X}\rightarrow\mathrm{0}^{+} } {n}=+\infty \\ $$$${on}\:{a}: \\ $$$$\int_{{X}} ^{\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{E}\left(\frac{\mathrm{1}}{{x}}\right)} }{{x}}{dx} \\ $$$$=\int_{{X}} ^{\frac{\mathrm{1}}{{n}}} \frac{\left(−\mathrm{1}\right)^{{n}} }{{x}}{dx}+\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\int_{\frac{\mathrm{1}}{{k}+\mathrm{1}}} ^{\frac{\mathrm{1}}{{k}}} \frac{\left(−\mathrm{1}\right)^{{k}} }{{x}}{dx} \\ $$$$=\left(−\mathrm{1}\right)^{{n}} {ln}\left(\frac{\mathrm{1}}{{nX}}\right)+\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {ln}\left(\frac{{k}+\mathrm{1}}{{k}}\right) \\ $$$${or}\:\:\frac{{n}}{{n}+\mathrm{1}}<{nX}\leqslant\mathrm{1} \\ $$$$\Rightarrow\:{lim}_{{X}\rightarrow\mathrm{0}^{+} } {ln}\left(\frac{\mathrm{1}}{{nX}}\right)=\mathrm{0} \\ $$$$\left(−\mathrm{1}\right)^{{k}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}}\right)\:{converge}. \\ $$$${D}'{ou}\:{lim}_{{X}\rightarrow\mathrm{0}^{+} } \int_{{X}} ^{\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{E}\left(\frac{\mathrm{1}}{{x}}\right)} }{{dx}}={ln}\left(\frac{\mathrm{2}}{\pi}\right)... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com