Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65736 by malwaan last updated on 03/Aug/19

∫_0 ^1  (√(1 + 4x^2 )) dx = ?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{\mathrm{1}\:+\:\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} }\:\boldsymbol{{dx}}\:=\:? \\ $$

Commented by Souvik Ghosh last updated on 03/Aug/19

let   u=2x⇔du=2dx  ∫_0 ^2 (√((1+u^2 ))) du/2  ⇒(1/2)[((u(√(1+u^2 )))/2) +(1/2)ln {u+(√(1+u^2 ))}]_0 ^2   ⇒(1/2)[(√5)+(1/2)ln (2+(√5))]

$${let}\:\:\:{u}=\mathrm{2}{x}\Leftrightarrow{du}=\mathrm{2}{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} \sqrt{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:{du}/\mathrm{2} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{{u}\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left\{{u}+\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }\right\}\right]_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}\left[\sqrt{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)\right] \\ $$

Commented by mathmax by abdo last updated on 03/Aug/19

changement 2x =sh(t) give t =argsh(2x) =ln(2x+(√(1+4x^2 )))  ∫_0 ^1 (√(1+4x^2 ))dx =∫_0 ^(ln(2+(√5))) (√(1+sh^2 t))((ch(t))/2)dt  =(1/2) ∫_0 ^(ln(2+(√5))) ch^2 t dt =(1/4) ∫_0 ^(ln(2+(√5))) (1+ch(2t))dt  =((ln(2+(√5)))/4) +(1/8)[sh(2t)]_0 ^(ln(2+(√5)))   =((ln(2+(√5)))/4) +(1/8)[((e^(2t) −e^(−2t) )/2)]_0 ^(ln(2+(√5)))   =((ln(2+(√5)))/4) +(1/(16)){(2+(√5))^2 −(1/((2+(√5))^2 ))}

$${changement}\:\mathrm{2}{x}\:={sh}\left({t}\right)\:{give}\:{t}\:={argsh}\left(\mathrm{2}{x}\right)\:={ln}\left(\mathrm{2}{x}+\sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }{dx}\:=\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} \sqrt{\mathrm{1}+{sh}^{\mathrm{2}} {t}}\frac{{ch}\left({t}\right)}{\mathrm{2}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} {ch}^{\mathrm{2}} {t}\:{dt}\:=\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} \left(\mathrm{1}+{ch}\left(\mathrm{2}{t}\right)\right){dt} \\ $$$$=\frac{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{8}}\left[{sh}\left(\mathrm{2}{t}\right)\right]_{\mathrm{0}} ^{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} \\ $$$$=\frac{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{8}}\left[\frac{{e}^{\mathrm{2}{t}} −{e}^{−\mathrm{2}{t}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} \\ $$$$=\frac{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{16}}\left\{\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} }\right\} \\ $$

Answered by MJS last updated on 03/Aug/19

∫(√(1+4x^2 ))dx=       [t=arcsinh 2x → dx=((√(1+4x^2 ))/2)dt]  =(1/2)∫cosh^2  t dt=(1/4)t+(1/4)sinh 2t =  =(1/4)arcsinh 2x +((x(√(1+4x^2 )))/2) +C  ∫_0 ^1 (√(1+4x^2 ))dx=(1/4)arcsinh 2 +((√5)/2)  (=(1/4)ln (2+(√5)) +((√5)/2))

$$\int\sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{arcsinh}\:\mathrm{2}{x}\:\rightarrow\:{dx}=\frac{\sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }}{\mathrm{2}}{dt}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{cosh}^{\mathrm{2}} \:{t}\:{dt}=\frac{\mathrm{1}}{\mathrm{4}}{t}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sinh}\:\mathrm{2}{t}\:= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{arcsinh}\:\mathrm{2}{x}\:+\frac{{x}\sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }}{\mathrm{2}}\:+{C} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{arcsinh}\:\mathrm{2}\:+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\left(=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)\:+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com