Question Number 220848 by Nicholas666 last updated on 20/May/25 | ||
![]() | ||
$$ \\ $$$$\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{2}}\:\sqrt{\frac{\left(\mathrm{2}\:−\:\mathrm{6}{x}\:+\:\mathrm{3}{x}^{\mathrm{2}} \right)^{\mathrm{2}} +\:\mathrm{4}\left(\mathrm{2}{x}\:−\:\mathrm{3}{x}^{\mathrm{2}} \:+\:{x}^{\mathrm{3}} \right)}{\mathrm{2}{x}\:−\:\mathrm{3}{x}^{\mathrm{2}} \:+\:{x}^{\mathrm{3}} }}\:{dx}\:\:\:\:\:\:\: \\ $$$$ \\ $$ | ||
Commented by MathematicalUser2357 last updated on 20/May/25 | ||
![]() | ||
$$\mathrm{Peserta}\:\mathrm{Anonim}...\:\mathrm{is}\:\mathrm{that}\:\mathrm{you}? \\ $$ | ||
Commented by Nicholas666 last updated on 20/May/25 | ||
![]() | ||
$${yes} \\ $$ | ||
Answered by Wuji last updated on 20/May/25 | ||
![]() | ||
$$ \\ $$$$ \\ $$$$\underset{\mathrm{0}} {\int}^{\mathrm{1}/\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\left(\mathrm{2}−\mathrm{6}{x}+\mathrm{3}{x}^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{4}\left(\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \right)}{\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{2}} +{x}^{\mathrm{3}} }}{dx} \\ $$$${let}\:{g}\left({x}\right)=\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \:\:\Rightarrow{g}'\left({x}\right)=\mathrm{2}−\mathrm{6}{x}+\mathrm{3}{x}^{\mathrm{2}} \\ $$$$\Delta\left({x}\right)=\sqrt{\left({g}'\left({x}\right)\right)^{\mathrm{2}} +\mathrm{4}{g}\left({x}\right)} \\ $$$${f}\left({x}\right)\:=\frac{\Delta\left({x}\right)}{\:\sqrt{{g}\left({x}\right)}}\:+\mathrm{2}{ln}\left(\frac{{g}'\left({x}\right)+\Delta\left({x}\right)}{\mathrm{2}\sqrt{{g}\left({x}\right)}}\right)\:\:\Rightarrow{f}'\left({x}\right)=\sqrt{\frac{\left({g}'\left({x}\right)\right)^{\mathrm{2}} +\mathrm{4}{g}\left({x}\right)}{{g}\left({x}\right)}} \\ $$$${apply}\:{product}\:{chain}\:{rule} \\ $$$$\frac{{d}}{{dx}}\left[\Delta\left({x}\right)/\sqrt{{g}\left({x}\right)}\right]=\frac{{d}}{{dx}}\left[\Delta{g}^{−\mathrm{1}/\mathrm{2}} \right]=\frac{\Delta'\sqrt{{g}}−\Delta\frac{{g}'}{\mathrm{2}\sqrt{{g}}}}{{g}} \\ $$$$\frac{{d}}{{dx}}\left[\mathrm{2}{ln}\left(\frac{{g}'+\Delta}{\mathrm{2}\sqrt{{g}}}\right)\right]\:=\frac{{d}}{{dx}}\left[\mathrm{2}{ln}\left({g}'+\Delta\right)\right]\:=\mathrm{2}\frac{{g}''+\Delta'}{{g}'+\Delta} \\ $$$$\Delta'\left({x}\right)=\frac{{g}'\left({x}\right){g}''\left({x}\right)+\mathrm{2}{g}'\left({x}\right)}{\Delta\left({x}\right)}=\sqrt{\frac{\left({g}'\right)^{\mathrm{2}} \mathrm{4}{g}}{{g}}} \\ $$$$\Rightarrow\int_{.} ^{\mathrm{1}/\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\left({g}'\right)^{\mathrm{2}} +\mathrm{4}{g}}{{g}}}{dx}\:={f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left({x}\right) \\ $$$${g}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} =\mathrm{1}−\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}}\:=\frac{\mathrm{3}}{\mathrm{8}} \\ $$$${g}'\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}−\mathrm{6}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{3}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{2}−\mathrm{3}+\frac{\mathrm{3}}{\mathrm{4}}\:=\left(−\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{16}} \\ $$$$\Delta\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\sqrt{\frac{\mathrm{1}}{\mathrm{16}}+\mathrm{4}\bullet\frac{\mathrm{3}}{\mathrm{8}}}=\sqrt{\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{3}}{\mathrm{2}}}=\sqrt{\frac{\mathrm{25}}{\mathrm{16}}}\:=\frac{\mathrm{5}}{\mathrm{4}} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{5}/\mathrm{4}}{\:\sqrt{\mathrm{3}/\mathrm{8}}}+\mathrm{2}{ln}\left(\frac{−\mathrm{2}/\mathrm{4}+\mathrm{5}/\mathrm{4}}{\mathrm{2}\sqrt{\mathrm{3}/\mathrm{8}}}\right)=\frac{\mathrm{5}}{\mathrm{4}}\bullet\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}+\mathrm{2}{ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}/\mathrm{2}}\right)=\frac{\mathrm{5}}{\mathrm{2}\sqrt{\mathrm{3}}}+\mathrm{2}{ln}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}}\right) \\ $$$${for}\:{x}\rightarrow\mathrm{0} \\ $$$${g}\left({x}\right)\sim\mathrm{2}{x}\:\Rightarrow{g}'\left({x}\right)\sim\mathrm{2}.\:\:\Delta\left({x}\right)\sim\sqrt{\mathrm{4}+\mathrm{8}{x}}\:\sim\mathrm{2}+\frac{\mathrm{2}{x}}{\mathrm{2}}=\mathrm{2}+{x} \\ $$$$\frac{\Delta\left({x}\right)}{\:\sqrt{{g}\left({x}\right)}}\:\sim\:\frac{\mathrm{2}+{x}}{\:\sqrt{\mathrm{2}{x}}}\:\:\overset{\mathrm{0}} {\rightarrow}\:+\infty \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)=\mathrm{2}{ln}\left(\mathrm{2}\right) \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}/\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\left(\mathrm{2}−\mathrm{6}{x}+\mathrm{3}{x}^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{4}\left(\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \right)}{\left(\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \right)}}{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{5}}{\mathrm{2}\sqrt{\mathrm{3}}}+\mathrm{2}{ln}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}}\right)−\mathrm{2}{ln}\left(\mathrm{2}\right)\right) \\ $$$$\mathrm{2}{ln}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}}\right)−\mathrm{2}{ln}\left(\mathrm{2}\right)=\mathrm{2}{ln}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{6}}}\bullet\frac{\mathrm{1}}{\mathrm{2}}\right)=−{ln}\left(\mathrm{6}\right) \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{5}}{\mathrm{2}\sqrt{\mathrm{3}}}−{ln}\left(\mathrm{6}\right)\right)\:=\frac{\mathrm{5}}{\mathrm{4}\sqrt{\mathrm{3}}}−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{6}\right) \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}/\mathrm{2}} \frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\left(\mathrm{2}−\mathrm{6}{x}+\mathrm{3}{x}^{\mathrm{2}} \right)+\mathrm{4}\left(\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \right)}{\left(\mathrm{2}{x}−\mathrm{3}{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \right)}}{dx}\:=\frac{\mathrm{5}}{\mathrm{4}\sqrt{\mathrm{3}}}−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{6}\right)\: \\ $$ | ||