Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 100362 by Dara last updated on 26/Jun/20

∫_0 ^1 ∫_0 ^1 e^(2x+y) dydx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} {e}^{\mathrm{2}{x}+{y}} {dydx} \\ $$

Answered by smridha last updated on 26/Jun/20

∫_0 ^1 dx.[e^(2x+y) ]_0 ^1   =∫_0 ^1 [e^(2x+1) −e^(2x) ]dx  =(e−1)[(e^(2x) /2)]_(0 ) ^1   =(1/2)(e−1)(e^2 −1)=(1/2)(e^3 −e^2 −e+1)

$$\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{{dx}}.\left[\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}+\boldsymbol{{y}}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left[\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}+\mathrm{1}} −\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}} \right]\boldsymbol{{dx}} \\ $$$$=\left(\boldsymbol{{e}}−\mathrm{1}\right)\left[\frac{\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}} }{\mathrm{2}}\right]_{\mathrm{0}\:} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\boldsymbol{{e}}−\mathrm{1}\right)\left(\boldsymbol{{e}}^{\mathrm{2}} −\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\boldsymbol{{e}}^{\mathrm{3}} −\boldsymbol{{e}}^{\mathrm{2}} −\boldsymbol{{e}}+\mathrm{1}\right) \\ $$

Answered by Ar Brandon last updated on 26/Jun/20

I=∫_0 ^1 ∫_0 ^1 e^(2x+y) dxdy=[∫_0 ^1 e^(2x) dx][∫_0 ^1 e^y dy]=[(e^(2x) /2)]_0 ^1 ∙[(e^y /1)]_0 ^1   ⇒I=(((e^2 −1)/2))(((e−1)/1))=(1/2)(e+1)(e−1)^2

$$\mathcal{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{2x}+\mathrm{y}} \mathrm{dxdy}=\left[\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{2x}} \mathrm{dx}\right]\left[\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{y}} \mathrm{dy}\right]=\left[\frac{\mathrm{e}^{\mathrm{2x}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{1}} \centerdot\left[\frac{\mathrm{e}^{\mathrm{y}} }{\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\Rightarrow\mathcal{I}=\left(\frac{\mathrm{e}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}\right)\left(\frac{\mathrm{e}−\mathrm{1}}{\mathrm{1}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{e}+\mathrm{1}\right)\left(\mathrm{e}−\mathrm{1}\right)^{\mathrm{2}} \\ $$

Answered by mathmax by abdo last updated on 26/Jun/20

I =∫_0 ^1  ∫_0 ^1  e^(2x+y)  dy dx ⇒ I =∫_0 ^1  e^(2x)  dx.∫_0 ^1  e^y  dy  =[(1/2)e^(2x) ]_0 ^1 .[e^y ]_0 ^1  =(1/2)(e^2 −1)(e−1) =(1/2)(e^3 −e^2 −e+1)

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{\mathrm{2x}+\mathrm{y}} \:\mathrm{dy}\:\mathrm{dx}\:\Rightarrow\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{\mathrm{2x}} \:\mathrm{dx}.\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{\mathrm{y}} \:\mathrm{dy} \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{\mathrm{2x}} \right]_{\mathrm{0}} ^{\mathrm{1}} .\left[\mathrm{e}^{\mathrm{y}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{e}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{e}−\mathrm{1}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{e}^{\mathrm{3}} −\mathrm{e}^{\mathrm{2}} −\mathrm{e}+\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com