Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26949 by Joel578 last updated on 31/Dec/17

∫_0 ^1  ∫_0 ^1  (1/(1 + xy)) dx dy

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{1}}{\mathrm{1}\:+\:{xy}}\:{dx}\:{dy} \\ $$

Commented by abdo imad last updated on 31/Dec/17

I= ∫_0^  ^1 ( ∫_0 ^1  (dx/(1+xy)))dy=∫_0 ^1 ((1/y)ln(1+xy)]_(x=0) ^(x=1) )dy  = ∫_0 ^1  ((ln(1+y))/y)dy    but  ∂ln(1+y)/∂y= (1/(1+y)) = Σ_(n=0) ^∝  (−1)^n y^n     with /y/<1  and  ln(1+y) = Σ _(n=0)^∝ (((−1)^n )/(n+1)) y^(n+1)  = Σ_(n=1) ^∝ (((−1)^(n−1) )/n) y^n   ⇒ ∫_0 ^1 ((ln(1+y))/y)dy = ?∫_0 ^1 (Σ_(n=1) ^∝ (((−1)^(n−1) )/n) y^(n−1)  )  = Σ_(n=1) ^∝  (((−1)^(n−1) )/n^2 ) but    Σ_(n=1) ^∝  (((−1)^(n−1) )/n^2 ) = −Σ_(n=1) ^α  (1/(4n^2 )) +Σ_(n=0) ^∝ (1/((2n+1)^2 ))  = −(1/4) (π^2 /6)+ (π^2 /8) =  (π^2 /(12)).

$$\left.{I}=\:\int_{\mathrm{0}^{} } ^{\mathrm{1}} \left(\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{\mathrm{1}+{xy}}\right){dy}=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{{y}}{ln}\left(\mathrm{1}+{xy}\right)\right]_{{x}=\mathrm{0}} ^{{x}=\mathrm{1}} \right){dy} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{y}\right)}{{y}}{dy}\:\:\:\:{but}\:\:\partial{ln}\left(\mathrm{1}+{y}\right)/\partial{y}=\:\frac{\mathrm{1}}{\mathrm{1}+{y}}\:=\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\left(−\mathrm{1}\right)^{{n}} {y}^{{n}} \:\:\:\:{with}\:/{y}/<\mathrm{1} \\ $$$${and}\:\:{ln}\left(\mathrm{1}+{y}\right)\:=\:\Sigma\:_{{n}=\mathrm{0}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:{y}^{{n}+\mathrm{1}} \:=\:\sum_{{n}=\mathrm{1}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{y}^{{n}} \\ $$$$\Rightarrow\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{y}\right)}{{y}}{dy}\:=\:?\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sum_{{n}=\mathrm{1}} ^{\propto} \frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{y}^{{n}−\mathrm{1}} \:\right) \\ $$$$=\:\sum_{{n}=\mathrm{1}} ^{\propto} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} }\:{but}\:\: \\ $$$$\sum_{{n}=\mathrm{1}} ^{\propto} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} }\:=\:−\sum_{{n}=\mathrm{1}} ^{\alpha} \:\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }\:+\sum_{{n}=\mathrm{0}} ^{\propto} \frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\:−\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:=\:\:\frac{\pi^{\mathrm{2}} }{\mathrm{12}}. \\ $$

Commented by Joel578 last updated on 01/Jan/18

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com