Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1

Question Number 220366    Answers: 1   Comments: 0

solve the system of equation using gaussian elimination method x+2y+3z=10 2x−3y+z=1 3x+y−2z=9

$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{system}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{equation}} \\ $$$$\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{gaussian}}\:\boldsymbol{\mathrm{elimination}}\:\boldsymbol{\mathrm{method}} \\ $$$$\boldsymbol{\mathrm{x}}+\mathrm{2}\boldsymbol{\mathrm{y}}+\mathrm{3}\boldsymbol{\mathrm{z}}=\mathrm{10} \\ $$$$\mathrm{2}\boldsymbol{\mathrm{x}}−\mathrm{3}\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}=\mathrm{1} \\ $$$$\mathrm{3}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}−\mathrm{2}\boldsymbol{\mathrm{z}}=\mathrm{9} \\ $$

Question Number 220365    Answers: 3   Comments: 0

Question Number 220362    Answers: 0   Comments: 0

Question Number 220361    Answers: 0   Comments: 0

Question Number 220340    Answers: 2   Comments: 0

Question Number 220320    Answers: 1   Comments: 3

Question Number 220353    Answers: 1   Comments: 3

Question Number 220307    Answers: 1   Comments: 0

Question Number 220286    Answers: 3   Comments: 5

Question Number 220278    Answers: 0   Comments: 0

Question Number 220269    Answers: 1   Comments: 0

lim_(t→0) ((C_1 J_ν (t)+C_2 Y_ν (t)+H_ν (t))/(C_1 J_ν (t)+C_2 Y_ν (t)))=?? ν∈R J_ν (z) Bessel function First kind Y_ν (z) Bessel function Second Kind H_ν (z) Struve H function

$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({t}\right)+\boldsymbol{\mathrm{H}}_{\nu} \left({t}\right)}{{C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({t}\right)}=?? \\ $$$$\nu\in\mathbb{R} \\ $$$${J}_{\nu} \left({z}\right)\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{First}\:\mathrm{kind} \\ $$$${Y}_{\nu} \left({z}\right)\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{Second}\:\mathrm{Kind} \\ $$$$\boldsymbol{\mathrm{H}}_{\nu} \left({z}\right)\:\mathrm{Struve}\:\mathrm{H}\:\mathrm{function} \\ $$

Question Number 220266    Answers: 1   Comments: 0

2^a + 2^b + 2^c = 148

$$\mathrm{2}^{\mathrm{a}} \:\:+\:\:\mathrm{2}^{\mathrm{b}} \:\:+\:\:\mathrm{2}^{\mathrm{c}} \:\:=\:\:\mathrm{148} \\ $$

Question Number 220264    Answers: 1   Comments: 0

Question Number 220263    Answers: 3   Comments: 0

Question Number 220262    Answers: 4   Comments: 0

Question Number 220257    Answers: 2   Comments: 0

proof that volume of frustum of circular cone is (1/3)h[A1+A2+(√(A1A2)) A_1 and A_2 are areas of base

$${proof}\:{that}\:{volume}\:{of}\:{frustum}\:{of} \\ $$$$\:{circular}\:{cone}\:{is}\:\frac{\mathrm{1}}{\mathrm{3}}{h}\left[{A}\mathrm{1}+{A}\mathrm{2}+\sqrt{{A}\mathrm{1}{A}\mathrm{2}}\right. \\ $$$${A}_{\mathrm{1}} {and}\:{A}_{\mathrm{2}} \:{are}\:\:{areas}\:{of}\:{base} \\ $$

Question Number 220253    Answers: 0   Comments: 0

Question Number 220250    Answers: 1   Comments: 0

Question Number 220249    Answers: 0   Comments: 0

Question Number 220248    Answers: 0   Comments: 0

Question Number 220247    Answers: 1   Comments: 0

Question Number 220246    Answers: 6   Comments: 0

Question Number 220245    Answers: 0   Comments: 0

Question Number 220244    Answers: 0   Comments: 0

Question Number 220243    Answers: 5   Comments: 0

Question Number 220242    Answers: 0   Comments: 0

∫ ((ln x)/((1 + x^2 )^2 )) dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\:\frac{{ln}\:{x}}{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)\:^{\mathrm{2}} }\:\:{dx} \\ $$$$ \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com