Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1

Question Number 223228    Answers: 1   Comments: 2

Question Number 223224    Answers: 0   Comments: 1

Σ_(k=1) ^∞ (1/k)=∞ Σ_(p prime) (1/p)=∞ (1+(1/2)+(1/3)+(1/4)....)−((1/2)+(1/3)+(1/5)+...)=??

$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{k}}=\infty \\ $$$$\underset{\mathrm{p}\:\mathrm{prime}} {\sum}\:\frac{\mathrm{1}}{{p}}=\infty \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}....\right)−\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+...\right)=?? \\ $$

Question Number 223230    Answers: 2   Comments: 0

Maksimum (((x^2 − 4x + 1)/(x^2 + 1))) = ?

$$\mathrm{Maksimum}\:\left(\frac{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{4x}\:+\:\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}}\right)\:=\:? \\ $$

Question Number 223216    Answers: 2   Comments: 0

Question Number 223213    Answers: 2   Comments: 1

Question Number 223210    Answers: 1   Comments: 0

I have a theory. this may not be true and I cannot prove it . I think If you want to draw a closed shape in x^(th) dimention the minimum number of vertex you will need is x+1 like if you want to draw a closed shape in 2^(nd) dimention you will need atleast 3 vertex(2+1){triangle} you can not draw a closed shape in two dimention using 2 vertex Similarly if you want to draw a closed shape in 3rd fimention you will need atleast 4 vertex(3+1){tetrahedron} you can not make a closed shape in 3dimention using 3 or 2 vertex Does that mean you will need atleast 5 vertex to draw a 4d object?? I dont know. It is just an assumption based on some similarities I noticed I cannot give you any proof of my theory

$${I}\:{have}\:{a}\:{theory}.\:{this}\:{may}\:{not}\:{be}\:{true}\:{and} \\ $$$${I}\:{cannot}\:{prove}\:{it}\:.\:{I}\:{think} \\ $$$${If}\:{you}\:{want}\:{to}\:{draw} \\ $$$$\:{a}\:{closed}\:{shape}\:{in}\:{x}^{{th}} \:{dimention} \\ $$$${the}\:{minimum}\:{number}\:{of} \\ $$$$\:{vertex}\:{you}\:{will}\:{need}\:{is}\:{x}+\mathrm{1} \\ $$$$ \\ $$$$\:{like}\:{if}\:{you}\:{want}\:{to}\:{draw}\:{a}\:{closed}\:{shape} \\ $$$${in}\:\mathrm{2}^{{nd}} \:{dimention}\:{you}\:{will}\:{need}\:{atleast} \\ $$$$\mathrm{3}\:{vertex}\left(\mathrm{2}+\mathrm{1}\right)\left\{{triangle}\right\} \\ $$$${you}\:{can}\:{not}\:{draw}\:{a}\:{closed}\:{shape}\:{in}\:{two} \\ $$$${dimention}\:{using}\:\mathrm{2}\:{vertex} \\ $$$${Similarly}\:{if}\:{you}\:\:{want}\:{to}\:{draw} \\ $$$${a}\:{closed}\:{shape}\:{in}\:\mathrm{3}{rd}\:{fimention} \\ $$$${you}\:{will}\:{need}\:{atleast}\:\mathrm{4}\:{vertex}\left(\mathrm{3}+\mathrm{1}\right)\left\{{tetrahedron}\right\} \\ $$$${you}\:{can}\:{not}\:{make}\:{a}\:{closed}\:{shape}\: \\ $$$${in}\:\mathrm{3}{dimention}\:{using}\:\mathrm{3}\:{or}\:\mathrm{2}\:{vertex} \\ $$$${Does}\:{that}\:{mean}\:{you}\:{will}\:{need}\: \\ $$$${atleast}\:\mathrm{5}\:{vertex}\:{to}\:{draw}\:{a}\:\mathrm{4}{d}\:{object}?? \\ $$$${I}\:{dont}\:{know}. \\ $$$${It}\:{is}\:{just}\:{an}\:{assumption}\:{based}\:{on} \\ $$$${some}\:{similarities}\:{I}\:{noticed} \\ $$$${I}\:{cannot}\:{give}\:{you}\:{any}\:{proof}\:{of}\:{my}\:{theory}\: \\ $$

Question Number 223204    Answers: 1   Comments: 0

∫_(π/6) ^(π/3) (dx/(1+(√(tanx)))) =...?

$$\:\:\:\underset{\frac{\pi}{\mathrm{6}}} {\overset{\frac{\pi}{\mathrm{3}}} {\int}}\frac{\boldsymbol{{dx}}}{\mathrm{1}+\sqrt{\boldsymbol{{tanx}}}}\:=...? \\ $$

Question Number 223203    Answers: 2   Comments: 0

Find x and y ix+y=ix^3 −y^3 and xy(y−ix)=c

$${Find}\:{x}\:{and}\:{y} \\ $$$$\:\:\:\:{ix}+{y}={ix}^{\mathrm{3}} −{y}^{\mathrm{3}} \\ $$$$\:\:\:{and}\: \\ $$$$\:\:\:\:{xy}\left({y}−{ix}\right)={c} \\ $$

Question Number 223193    Answers: 0   Comments: 0

Prove that: ∫_( 0) ^( (π/2)) tan^(− 1) (r sin θ) dθ = 2𝛘_2 ((((√(1 + r^2 )) − 1)/r))

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\mathrm{tan}^{−\:\mathrm{1}} \left(\mathrm{r}\:\mathrm{sin}\:\theta\right)\:\mathrm{d}\theta\:\:\:=\:\:\:\mathrm{2}\boldsymbol{\chi}_{\mathrm{2}} \left(\frac{\sqrt{\mathrm{1}\:\:+\:\:\mathrm{r}^{\mathrm{2}} }\:\:−\:\:\mathrm{1}}{\mathrm{r}}\right) \\ $$

Question Number 223192    Answers: 0   Comments: 0

Evaluate ; ∫_0 ^1 Π_(n=1) ^∞ (1−q^(24n) ) dq

$$ \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Evaluate}}\:;\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−{q}^{\mathrm{24}{n}} \right)\:\mathrm{d}{q} \\ $$$$ \\ $$

Question Number 223189    Answers: 1   Comments: 3

(x−1)(x^2 −2)(x^3 −3)(x^4 −4)=36 x=?

$$\left(\boldsymbol{{x}}−\mathrm{1}\right)\left(\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{2}\right)\left(\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{3}\right)\left(\boldsymbol{{x}}^{\mathrm{4}} −\mathrm{4}\right)=\mathrm{36} \\ $$$$\boldsymbol{{x}}=? \\ $$

Question Number 223187    Answers: 2   Comments: 0

Question Number 223191    Answers: 0   Comments: 0

Evaluate ; ∫_0 ^1 Π_(n=1) ^∞ (1−q^(4n) )^6 dq

$$ \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\mathrm{Evaluate}}\:;\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\:\left(\mathrm{1}−{q}^{\mathrm{4}{n}} \right)^{\mathrm{6}} \:{dq} \\ $$$$ \\ $$

Question Number 223179    Answers: 1   Comments: 1

If: xy = e^(𝛑/4) Find: tg (ln ((x^3 /y))) ∙ tg (ln ((y^3 /x))) = ?

$$\mathrm{If}:\:\:\:\mathrm{xy}\:=\:\boldsymbol{\mathrm{e}}^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{tg}\:\left(\mathrm{ln}\:\left(\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{y}}\right)\right)\:\centerdot\:\mathrm{tg}\:\left(\mathrm{ln}\:\left(\frac{\mathrm{y}^{\mathrm{3}} }{\mathrm{x}}\right)\right)\:=\:? \\ $$

Question Number 223169    Answers: 0   Comments: 0

evaluate Σ_(h=1) ^∞ (((−1)^(h−1) )/p_h ) , p_h ∈P(Set of primes) , h∈Z

$$\mathrm{evaluate}\: \\ $$$$\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{h}−\mathrm{1}} }{{p}_{{h}} }\:\:,\:{p}_{{h}} \in\mathbb{P}\left(\mathrm{Set}\:\mathrm{of}\:\mathrm{primes}\right)\:,\:{h}\in\mathbb{Z} \\ $$

Question Number 223161    Answers: 2   Comments: 4

Solve for x if (√(x+1))+(√(x−1))=1

$${Solve}\:{for}\:{x}\:{if} \\ $$$$\:\sqrt{{x}+\mathrm{1}}+\sqrt{{x}−\mathrm{1}}=\mathrm{1} \\ $$

Question Number 223157    Answers: 2   Comments: 0

Question Number 223139    Answers: 2   Comments: 1

Question Number 223137    Answers: 1   Comments: 1

Question Number 223123    Answers: 0   Comments: 0

∫_0 ^1 ln(cos(1−x+x^2 )∙sec(x^2 ) dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{ln}\left(\mathrm{cos}\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right)\centerdot\mathrm{sec}\left({x}^{\mathrm{2}} \right)\:\mathrm{d}{x}\right. \\ $$$$ \\ $$

Question Number 223116    Answers: 1   Comments: 0

∫_0 ^( 1) ln^5 (x^2 +1) dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{ln}^{\mathrm{5}} \left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\:{dx} \\ $$$$ \\ $$

Question Number 223112    Answers: 0   Comments: 2

Question Number 223110    Answers: 1   Comments: 0

Question Number 223101    Answers: 0   Comments: 6

Question Number 223096    Answers: 0   Comments: 0

∫_(−(1/( (√3)))) ^(1/( (√3))) (x^4 /(1−x^4 ))cos^(−1) ((2/(1+x^2 )))dx=?

$$\underset{−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}} {\overset{\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}} {\int}}\:\:\frac{{x}^{\mathrm{4}} }{\mathrm{1}−{x}^{\mathrm{4}} }\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx}=? \\ $$

Question Number 223085    Answers: 1   Comments: 0

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com